Deformation quantization of bosonic strings

被引:20
作者
García-Compeán, H [1 ]
Plebanski, JF [1 ]
Przanowski, M [1 ]
Turrubaites, FJ [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estud Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 44期
关键词
D O I
10.1088/0305-4470/33/44/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme.
引用
收藏
页码:7935 / 7953
页数:19
相关论文
共 49 条
[1]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .3. A GENERALIZED WICK THEOREM AND MULTITIME MAPPING [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2206-&
[3]   Quantum theory in curved spacetime using the Wigner function [J].
Antonsen, F .
PHYSICAL REVIEW D, 1997, 56 (02) :920-935
[4]  
ANTONSEN F, 1997, DEFORMATION QUANTIZA
[5]  
BATALIN IA, 1988, ANN I H POINCARE-PHY, V49, P145
[6]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[7]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[8]  
Berestetskii V. B., 1971, Relativistic Quantum Theory
[9]  
Birrell N. D., 1982, QUANTUM FIELDS CURVE
[10]   Homogeneous Fedosov star products on cotangent bundles - II: GNS representations, the WKB expansion, traces, and applications [J].
Bordemann, M ;
Neumaier, N ;
Waldmann, S .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 29 (03) :199-234