An Inverse Gaussian Process Model for Degradation Data

被引:343
作者
Wang, Xiao [1 ]
Xu, Dihua [2 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
基金
美国国家科学基金会;
关键词
Bootstrap; Degradation data; EM algorithm; Empirical processes; Random effects; Reliability; GAMMA PROCESS MODEL;
D O I
10.1198/TECH.2009.08197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the maximum likelihood estimation of a class of inverse Gaussian process models for degradation data. Both the subject-to-subject heterogeneity and covariate information can be incorporated into the model in a natural way. The EM algorithm is used to obtain the maximum likelihood estimators of the unknown parameters and the bootstrap is used to assess the variability of the maximum likelihood estimators. Simulations are used to validate the method. The model is fitted to laser data and corresponding goodness-of-fit tests are carried out. Failure time distributions in terms of degradation level passages are calculated and illustrated. The supplemental materials for this article are available online.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 27 条
[21]   Semiparametric inference on a class of Wiener processes [J].
Wang, Xiao .
JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (02) :179-207
[22]  
Wasan M.T., 1968, SCAND ACTUAR J, V1, P69
[23]   QUASI-LIKELIHOOD FUNCTIONS, GENERALIZED LINEAR-MODELS, AND GAUSS-NEWTON METHOD [J].
WEDDERBURN, RWM .
BIOMETRIKA, 1974, 61 (03) :439-447
[24]  
Wellner JA, 2000, ANN STAT, V28, P779
[25]  
Whitmore G A, 1995, Lifetime Data Anal, V1, P307, DOI 10.1007/BF00985762
[26]   Modelling Accelerated Degradation Data Using Wiener Diffusion with a Time Scale Transformation [J].
Whitmore G.A. ;
Schenkelberg F. .
Lifetime Data Analysis, 1997, 3 (1) :27-45
[27]   The distribution of chi square [J].
Wilson, EB ;
Hilferty, MM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 :684-688