Relations of multiple zeta values and their algebraic expression

被引:63
作者
Hoffman, ME [1 ]
Ohno, Y
机构
[1] USN Acad, Dept Math, Annapolis, MD 21402 USA
[2] Kinki Univ, Fac Sci & Technol, Dept Math & Phys, Higashiosaka, Osaka 5778502, Japan
关键词
multiple zeta values; cyclic derivation; quasi-symmetric functions;
D O I
10.1016/S0021-8693(03)00016-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a new class of relations, which we call the cyclic sum identities, among the multiple zeta values zeta(k(1),...,k(1)) = Sigman(l)>...greater than or equal to1greater than or equal ton(l)1/(n(l)(k1)... n(k)(k1)). These identities have an elementary proof and imply the "sum theorem" for multiple zeta values. They also have a succinct statement in terms of 11 cyclic derivations" as introduced by Rota, Sagan, and Stein. In addition, we discuss the expression of other relations of multiple zeta values via the shuffle and "harmonic" products on the underlying vector space h of the noncommutative polynomial ring Q(x, y), and also using an action of the Hopf algebra of quasi-symmetric functions on Q(x, y). Published by Elsevier Science (USA).
引用
收藏
页码:332 / 347
页数:16
相关论文
共 21 条
[1]  
BIGOTTE M, 1998, TABLES RELATIONS FON
[2]  
Borwein J. M., 1997, ELECT J COMBIN, V4, P5
[3]  
BORWEIN JM, 1998, ELECT J COMBIN, V5
[4]   Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops [J].
Broadhurst, DJ ;
Kreimer, D .
PHYSICS LETTERS B, 1997, 393 (3-4) :403-412
[5]   On posets and Hopf algebras [J].
Ehrenborg, R .
ADVANCES IN MATHEMATICS, 1996, 119 (01) :1-25
[6]  
Geissinger L., 1977, LECT NOTES MATH, V579, P168
[7]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[8]  
Granville A., 1997, London Math. Soc. Lecture Note Ser., V247, P95
[9]   The algebra of multiple harmonic series [J].
Hoffman, ME .
JOURNAL OF ALGEBRA, 1997, 194 (02) :477-495
[10]   Periods of mirrors and multiple zeta values [J].
Hoffman, ME .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :971-974