A generalization of Fagin's theorem

被引:0
作者
Medina, JA [1 ]
Immerman, N [1 ]
机构
[1] UNIV MASSACHUSETTS, DEPT COMP SCI, AMHERST, MA 01003 USA
来源
11TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS | 1996年
关键词
D O I
10.1109/LICS.1996.561298
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
[21]   On a generalization of Lyapounov's theorem [J].
vanMill, J ;
Ran, A .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02) :227-242
[22]   A generalization of Obata’s theorem [J].
Akhil Ranjan ;
G. Santhanam .
The Journal of Geometric Analysis, 1997, 7 (3) :357-375
[23]   On a generalization of Fueter's theorem [J].
Sommen, F .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04) :899-902
[24]   GENERALIZATION OF A THEOREM OF KULLBACK,S [J].
RECOULES, R .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12) :691-694
[25]   On a generalization of Polya's theorem [J].
Rochev, I. P. .
MATHEMATICAL NOTES, 2007, 81 (1-2) :247-259
[26]   On a Generalization of Voronin's Theorem [J].
Laurincikas, A. .
MATHEMATICAL NOTES, 2020, 107 (3-4) :442-451
[27]   A generalization of Jentzsch’s theorem [J].
E. A. Lebedeva .
Mathematical Notes, 2010, 88 :717-722
[28]   Cauchy's theorem and generalization [J].
Reuss, Paul .
EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
[29]   A generalization of Poncelet's theorem [J].
Protasov, V. Yu. .
RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (06) :1180-1182
[30]   A generalization of the Opial's theorem [J].
Cegielski, Andrzej .
CONTROL AND CYBERNETICS, 2007, 36 (03) :601-610