Optical FANO resonance with polarization independence with novel nano-antenna

被引:6
作者
Naser-Moghadasi, Mohammad [1 ]
Zarrabi, Ferdows B. [1 ]
Pandesh, Saeedeh [2 ]
Rajabloo, Hossein [3 ]
Bazgir, Maryam [4 ]
机构
[1] Islamic Azad Univ, Fac Engn, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Elect Engn, East Azarbaijan Sci & Res Branch, Tabriz, Iran
[3] Iran Univ Sci & Technol, Dept Elect Engn, Tehran, Iran
[4] Arak Univ, Dept Elect & Comp Engn, Arak, Iran
关键词
FANO; Sub wavelength; Controllable field enhancement; Arc-disk; Plasmonic; PLASMONIC SYSTEMS; NEAR-FIELD; METAMATERIALS; MICROSCOPY;
D O I
10.1007/s11082-016-0548-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Plasmonic Nano-systems have been investigated for the generation of Fano resonances with sharp dispersion for field enhancement at FANO resonance. Here, a novel tetrahedron arc-disk nano-antenna for optical Fano with polarization independence is suggested at infrared application. The special symmetrical form of structure is made independent of incident wave polarization. Here, for prototype nano antenna, the E-field enhancements at resonances are compared and design parameters effect on Fano resonance is debated. SiN Substrate selected with refractive index of 1.98 and gold with Palik optical characteristic used for modeling of the metal layer. The |E-2|/|E-int(2)| increased more than 10,000 (V/m)(2) at Fano resonances and the parametric study shows the gap effects on FANO resonance controlling. As a result, by variation of the thickness of the arc element we are able to control the second resonance energy and achieved to a coupled formation. Subwavelength prototype structure is modified for FANO resonance and controlling at infrared regime.
引用
收藏
页数:9
相关论文
共 22 条
[1]  
Adato R., 2013, CLEO QELS FUNDAMENTA
[2]   Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications [J].
Ahmadian, D. ;
Ghobadi, Ch. ;
Nourinia, J. .
OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) :1097-1106
[3]   Rhodium Plasmonics for Deep-Ultraviolet Bio-Chemical Sensing [J].
Ahmadivand, Arash ;
Sinha, Raju ;
Kaya, Serkan ;
Pala, Nezih .
PLASMONICS, 2016, 11 (03) :839-849
[4]   Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna [J].
Ahmadivand, Arash ;
Sinha, Raju ;
Pala, Nezih .
OPTICS COMMUNICATIONS, 2015, 355 :103-108
[5]   Multiple coil-type Fano resonances in all-dielectric antisymmetric quadrumers [J].
Ahmadivand, Arash ;
Pala, Nezih .
OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (07) :2055-2064
[6]   Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations [J].
Aouani, Heykel ;
Mahboub, Oussama ;
Bonod, Nicolas ;
Devaux, Eloise ;
Popov, Evgeny ;
Rigneault, Herve ;
Ebbesen, Thomas W. ;
Wenger, Jerome .
NANO LETTERS, 2011, 11 (02) :637-644
[7]   Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials [J].
Cao, Wei ;
Singh, Ranjan ;
Al-Naib, Ibraheem A. I. ;
He, Mingxia ;
Taylor, Antoinette J. ;
Zhang, Weili .
OPTICS LETTERS, 2012, 37 (16) :3366-3368
[8]   Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing [J].
Cetin, Arif E. ;
Altug, Hatice .
ACS NANO, 2012, 6 (11) :9989-9995
[9]   Antenna-coupled microcavities for enhanced infrared photo-detection [J].
Chen, Yuk Nga ;
Todorov, Yanko ;
Askenazi, Benjamin ;
Vasanelli, Angela ;
Biasiol, Giorgio ;
Colombelli, Raffaele ;
Sirtori, Carlo .
APPLIED PHYSICS LETTERS, 2014, 104 (03)
[10]   Fano resonant plasmonic systems: Functioning principles and applications [J].
Gallinet, B. ;
Lovera, A. ;
Siegfried, T. ;
Sigg, H. ;
Martin, O. J. F. .
FIFTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANO-PHOTONICS (TACONA-PHOTONICS 2012), 2012, 1475 :18-20