A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes:: Identification of divergent regions and categorization of shared repeats

被引:236
作者
Timme, Ruth E.
Kuehl, Jennifer V.
Boore, Jeffrey L.
Jansen, Robert K.
机构
[1] Univ Texas, Sect Integrat Biol, Austin, TX 78712 USA
[2] Univ Texas, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[3] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA
[4] Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA
[5] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[6] Genome Project Solut, Hercules, CA 94547 USA
基金
美国国家科学基金会;
关键词
Asteraceae; chloroplast DNA; comparative genomics; divergent sequence; genomic repeats; Helianthus annuus; Lactuca sativa; RNA editing;
D O I
10.3732/ajb.94.3.302
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We have sequenced two complete chloroplast genomes in the Asteraceae, Helianthus annuus (sunflower), and Lactuca sativa (lettuce), which belong to the distantly related subfamilies, Asteroideae and Cichorioideae, respectively. The Helianthus chloroplast genome is 151 104 bp and the Lactuca genome is 152 772 bp long, which is within the usual size range for chloroplast genomes in flowering plants. When compared to tobacco, both genomes have two inversions: a large 22.8-kb inversion and a smaller 3.3-kb inversion nested within it. Pairwise sequence divergence across all genes, introns, and spacers in Helianthus and Lactuca has resulted in the discovery of new, fast-evolving DNA sequences for use in species-level phylogenetics, such as the trnY-rpoB, trnL-rpl32, and ndhC-trnV spacers. Analysis and categorization of shared repeats resulted in seven classes useful for future repeat studies: double tandem repeats, three or more tandem repeats, direct repeats dispersed in the genorne, repeats found in reverse complement orientation, hairpin loops, runs of A's orT's in excess of 12 bp, and gene or tRNA similarity. Results from BLAST searches of our genomic sequence against expressed sequence tag (EST) databases for both genomes produced eight likely RNA edited sites (C -> U changes). These detailed analyses in Asteraceae contribute to a broader understanding of plastid evolution across flowering plants.
引用
收藏
页码:302 / 312
页数:11
相关论文
共 52 条
[1]   Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome:: A comparative analysis of four monocot chloroplast genomes [J].
Asano, T ;
Tsudzuki, T ;
Takahashi, S ;
Shimada, H ;
Kadowaki, K .
DNA RESEARCH, 2004, 11 (02) :93-99
[2]   Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer [J].
Bayer, RJ ;
Starr, JR .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1998, 85 (02) :242-256
[3]  
Bayer RJ, 2002, SYST BOT, V27, P801
[4]  
Bremer K., 1994, ASTERACEAE CLADISTIC
[5]  
Daniell H, 2005, METH MOL B, V286, P111
[6]   Breakthrough in chloroplast genetic engineering of agronomically important crops [J].
Daniell, H ;
Kumar, S ;
Dufourmantel, N .
TRENDS IN BIOTECHNOLOGY, 2005, 23 (05) :238-245
[7]   Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes [J].
Daniell, Henry ;
Lee, Seung-Bum ;
Grevich, Justin ;
Saski, Christopher ;
Quesada-Vargas, Tania ;
Guda, Chittibabu ;
Tomkins, JeVrey ;
Jansen, Robert K. .
THEORETICAL AND APPLIED GENETICS, 2006, 112 (08) :1503-1518
[8]   Molecular phylogeny of Brachycome (Asteraceae) [J].
Denda, T ;
Watanabe, K ;
Kosuge, K ;
Yahara, T ;
Ito, M .
PLANT SYSTEMATICS AND EVOLUTION, 1999, 217 (3-4) :299-311
[9]   The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes [J].
Drescher, A ;
Ruf, S ;
Calsa, T ;
Carrer, H ;
Bock, R .
PLANT JOURNAL, 2000, 22 (02) :97-104
[10]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194