Quasinormality and Fuglede-Putnam theorem for (s,p)-w-hyponormal operators

被引:5
作者
Rashid, M. H. M. [1 ]
机构
[1] Mutah Univ, Dept Math & Stat, Fac Sci, Al Karak, Jordan
关键词
Fuglede-Putnam theorem; Furuta inequality; Lowner-Heinz inequality; p-w-hyponormal; (s; p)-w-hyponormal; 47B20; 47A63; P-HYPONORMAL OPERATORS; CLASS-A;
D O I
10.1080/03081087.2016.1248346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate several properties of Aluthge transform T-s = /T/ sU/T/ s of an operator T = U/T/. We prove (i) if T is (s, p)-w-hyponormal operator and Ts is quasinormal (resp., normal), then T is quasinormal (resp., normal), (ii) if T is (s, p)-w-hyponormal operator and Ts is a partial isometry, then T is quasinormal partial isometry, (iii) if T and T* are (s, p)-w-hyponormal operator, then T is normal, and (iv) FugledePutnam type theorem holds for a class p-w-hyponormal operator T with 0 < p = 1 if T satisfies a kernel condition ker (T). ker (T*).
引用
收藏
页码:1600 / 1616
页数:17
相关论文
共 36 条
[1]   ON P-HYPONORMAL OPERATORS FOR 0 LESS-THAN P LESS-THAN 1 [J].
ALUTHGE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (03) :307-315
[2]   ω-hyponormal operators II [J].
Aluthge, A ;
Wang, DM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (03) :324-331
[3]  
Aluthge A, 1999, MATH INEQUAL APPL, V2, P113
[4]   w-Hyponormal operators [J].
Aluthge, A ;
Wang, DM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (01) :1-10
[5]  
Changsen Y., 2005, CHIN Q J MATH, V20, P79
[6]  
Changsen Y, 2005, ACTA SCI MATH SZEGED, V71, P363
[7]   An operator transform from class A to the class of hyponormal operators and its application [J].
Cho, M ;
Yamazaki, T .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) :497-508
[8]  
Conway J.B., 1990, A Course in Functional Analysis, V96
[10]   Quasi-similar p-hyponormal operators [J].
Duggal, BP .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (03) :338-345