A comprehensive comparison of general RNA-RNA interaction prediction methods

被引:42
作者
Lai, Daniel
Meyer, Irmtraud M. [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Ctr High Throughput Biol, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SECONDARY STRUCTURE PREDICTION; ACCESSIBILITY-BASED PREDICTION; EFFICIENT TARGET PREDICTION; BASE-PAIRING PROBABILITIES; PARTITION-FUNCTION; ALIGNMENT; GENOME; THERMODYNAMICS; TRANSLATION; SEQUENCES;
D O I
10.1093/nar/gkv1477
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-RNA interactions are fast emerging as a major functional component in many newly discovered non-coding RNAs. Basepairing is believed to be a major contributor to the stability of these intermolecular interactions, much like intramolecular basepairs formed in RNA secondary structure. As such, using algorithms similar to those for predicting RNA secondary structure, computational methods have been recently developed for the prediction of RNA-RNA interactions. We provide the first comprehensive comparison comprising 14 methods that predict general intermolecular basepairs. To evaluate these, we compile an extensive data set of 54 experimentally confirmed fungal snoRNA-rRNA interactions and 102 bacterial sRNA-mRNA interactions. We test the performance accuracy of all methods, evaluating the effects of tool settings, sequence length, and multiple sequence alignment usage and quality. Our results show that-unlike for RNA secondary structure prediction-the overall best performing tools are non-comparative energy-based tools utilizing accessibility information that predict short interactions on this data set. Furthermore, we find that maintaining high accuracy across biologically different data sets and increasing input lengths remains a huge challenge, causing implications for de novo transcriptome-wide searches. Finally, we make our interaction data set publicly available for future development and benchmarking efforts.
引用
收藏
页数:13
相关论文
共 65 条
[1]   Lost in translation: an assessment and perspective for computational microRNA target identification [J].
Alexiou, Panagiotis ;
Maragkakis, Manolis ;
Papadopoulos, Giorgos L. ;
Reczko, Martin ;
Hatzigeorgiou, Artemis G. .
BIOINFORMATICS, 2009, 25 (23) :3049-3055
[2]   The eukaryotic genome as an RNA machine [J].
Amaral, Paulo P. ;
Dinger, Marcel E. ;
Mercer, Tim R. ;
Mattick, John S. .
SCIENCE, 2008, 319 (5871) :1787-1789
[3]   Multiperm: shuffling multiple sequence alignments while approximately preserving dinucleotide frequencies [J].
Anandam, Parvez ;
Torarinsson, Elfar ;
Ruzzo, Walter L. .
BIOINFORMATICS, 2009, 25 (05) :668-669
[4]   Secondary structure prediction of interacting RNA molecules [J].
Andronescu, M ;
Zhang, ZC ;
Condon, A .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 345 (05) :987-1001
[5]   RNA STRAND: The RNA secondary structure and statistical analysis database [J].
Andronescu, Mirela ;
Bereg, Vera ;
Hoos, Holger H. ;
Condon, Anne .
BMC BIOINFORMATICS, 2008, 9 (1)
[6]   The expanding snoRNA world [J].
Bachellerie, JP ;
Cavaillé, J ;
Hüttenhofer, A .
BIOCHIMIE, 2002, 84 (08) :775-790
[7]   Computational prediction of sRNAs and their targets in bacteria [J].
Backofen, Rolf ;
Hess, Wolfgang R. .
RNA BIOLOGY, 2010, 7 (01) :33-42
[8]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[9]   Partition function and base pairing probabilities of RNA heterodimers [J].
Bernhart, Stephan H. ;
Tafer, Hakim ;
Mueckstein, Ulrike ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
[10]   RNA Accessibility in cubic time [J].
Bernhart, Stephan H. ;
Mueckstein, Ullrike ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6