Recent Progress of Deep Learning in Drug Discovery

被引:13
作者
Wang, Feng [1 ]
Diao, XiaoMin [1 ]
Chang, Shan [2 ]
Xu, Lei [2 ]
机构
[1] Changzhou Univ, Coll Informat Sci & Engn, Huaide Coll, Taizhou 214500, Peoples R China
[2] Jiangsu Univ Technol, Inst Bioinformat & Med Engn, Changzhou 213001, Peoples R China
基金
美国国家科学基金会;
关键词
Artificial intelligence; neural networks; deep learning; drug discovery; de novo design; property prediction; biomedical imaging; synthetic planning; CONVOLUTIONAL NEURAL-NETWORK; AQUEOUS SOLUBILITY; PREDICTION; DESIGN; CLASSIFICATION; REPRESENTATION; TOOL;
D O I
10.2174/1381612827666210129123231
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Deep learning, an emerging field of artificial intelligence based on neural networks in machine learning, has been applied in various fields and is highly valued. Herein, we mainly review several mainstream architectures in deep learning, including deep neural networks, convolutional neural networks and recurrent neural networks in the field of drug discovery. The applications of these architectures in molecular de novo design, property prediction, biomedical imaging and synthetic planning have also been explored. Apart from that, we further discuss the future direction of the deep learning approaches and the main challenges we need to address.
引用
收藏
页码:2088 / 2096
页数:9
相关论文
共 50 条
[1]   Spectrum of deep learning algorithms in drug discovery [J].
Piroozmand, Firoozeh ;
Mohammadipanah, Fatemeh ;
Sajedi, Hedieh .
CHEMICAL BIOLOGY & DRUG DESIGN, 2020, 96 (03) :886-901
[2]   Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics [J].
Raza, Ali ;
Chohan, Talha Ali ;
Buabeid, Manal ;
Arafa, El-Shaima A. ;
Chohan, Tahir Ali ;
Fatima, Batool ;
Sultana, Kishwar ;
Ullah, Malik Saad ;
Murtaza, Ghulam .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (18) :9177-9192
[3]   The power of deep learning to ligand-based novel drug discovery [J].
Baskin, Igor I. .
EXPERT OPINION ON DRUG DISCOVERY, 2020, 15 (07) :755-764
[4]   A compact review of progress and prospects of deep learning in drug discovery [J].
Li, Huijun ;
Zou, Lin ;
Kowah, Jamal Alzobair Hammad ;
He, Dongqiong ;
Liu, Zifan ;
Ding, Xuejie ;
Wen, Hao ;
Wang, Lisheng ;
Yuan, Mingqing ;
Liu, Xu .
JOURNAL OF MOLECULAR MODELING, 2023, 29 (04)
[5]   Comprehensive Survey of Recent Drug Discovery Using Deep Learning [J].
Kim, Jintae ;
Park, Sera ;
Min, Dongbo ;
Kim, Wankyu .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (18)
[6]   Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era [J].
Jing, Yankang ;
Bian, Yuemin ;
Hu, Ziheng ;
Wang, Lirong ;
Xie, Xiang-Qun Sean .
AAPS JOURNAL, 2018, 20 (03)
[7]   Deep learning tools for advancing drug discovery and development [J].
Nag, Sagorika ;
Baidya, Anurag T. K. ;
Mandal, Abhimanyu ;
Mathew, Alen T. ;
Das, Bhanuranjan ;
Devi, Bharti ;
Kumar, Rajnish .
3 BIOTECH, 2022, 12 (05)
[8]   Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning [J].
Yan, Jielu ;
Cai, Jianxiu ;
Zhang, Bob ;
Wang, Yapeng ;
Wong, Derek F. ;
Siu, Shirley W., I .
ANTIBIOTICS-BASEL, 2022, 11 (10)
[9]   Artificial intelligence to deep learning: machine intelligence approach for drug discovery [J].
Gupta, Rohan ;
Srivastava, Devesh ;
Sahu, Mehar ;
Tiwari, Swati ;
Ambasta, Rashmi K. ;
Kumar, Pravir .
MOLECULAR DIVERSITY, 2021, 25 (03) :1315-1360
[10]   A compact review of progress and prospects of deep learning in drug discovery [J].
Huijun Li ;
Lin Zou ;
Jamal Alzobair Hammad Kowah ;
Dongqiong He ;
Zifan Liu ;
Xuejie Ding ;
Hao Wen ;
Lisheng Wang ;
Mingqing Yuan ;
Xu Liu .
Journal of Molecular Modeling, 2023, 29