Lie-point symmetries of the discrete Liouville equation

被引:12
作者
Levi, D. [1 ,2 ]
Martina, L. [3 ,4 ]
Winternitz, P. [1 ,2 ,5 ,6 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Sez INFN Roma Tre, I-00146 Rome, Italy
[3] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy
[4] Sez INFN Lecce, I-73100 Lecce, Italy
[5] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[6] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebras of Lie groups; integrable systems; partial differential equations; discretization procedures for PDEs;
D O I
10.1088/1751-8113/48/2/025204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup SLx(2, R) circle times SLy(2, R). The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.
引用
收藏
页数:18
相关论文
共 50 条
[21]   Truncation method with point transformation for exact solution of Liouville Bratu Gelfand equation [J].
Saleh, R. ;
Mabrouk, S. M. ;
Kassem, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (05) :1219-1227
[22]   LIE SYMMETRIES, CONSERVATION LAWS AND EXACT SOLUTIONS OF A GENERALIZED QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION [J].
Bruzon, Maria-Santos ;
Recio, Elena ;
Garrido, Tamara-Maria ;
de la Rosa, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10) :2691-2701
[23]   Lie point symmetries, conservation laws and exact solutions of (1+n)-dimensional modified Zakharov-Kuznetsov equation describing the waves in plasma physics [J].
Ali, Muhammad Nasir ;
Seadawy, Aly R. ;
Husnine, Syed Muhammad .
PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (04)
[24]   On the equivalence of Lie symmetries and group representations [J].
Craddock, M. J. ;
Dooley, A. H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) :621-653
[25]   Discrete symmetries and nonlocal reductions [J].
Gurses, Metin ;
Pekcan, Asli ;
Zheltukhin, Kostyantyn .
PHYSICS LETTERS A, 2020, 384 (03)
[26]   Conservation laws and associated Lie point symmetries admitted by the transient heat conduction problem for heat transfer in straight fins [J].
Ndlovu, Partner L. ;
Moitsheki, Rasselo J. .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (08) :984-994
[27]   Fundamental solutions, transition densities and the integration of Lie symmetries [J].
Craddock, Mark .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (06) :2538-2560
[28]   Nonclassical potential symmetries for the Burgers equation [J].
Gandarias, M. L. ;
Bruzon, M. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1826-E1834
[29]   Conditional Lie Backlund symmetries of Hamilton-Jacobi equations [J].
Qua, Changzheng ;
Ji, Lina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E243-E258
[30]   Nonclassical symmetries and analytic solutions to Kawahara equation [J].
Verma, Pallavi ;
Kaur, Lakhveer .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (08)