On computing the 2-vertex-connected components of directed graphs

被引:8
作者
Jaberi, Raed [1 ]
机构
[1] Tech Univ Ilmenau, Dept Comp Sci & Automat, D-98693 Ilmenau, Germany
关键词
Graph algorithms; 2-vertex-connected components; Strong articulation points; Approximation algorithms; DOMINATORS;
D O I
10.1016/j.dam.2015.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the problem of computing the 2-vertex-connected components of directed graphs. We present a new algorithm for solving this problem in O(nm) time. Furthermore, we show that the old algorithm of Erusalimskii and Svetlov runs in O(nm(2)) time. In this paper, we investigate the relationship between 2-vertex-connected components and dominator trees. We also consider three applications of our new algorithm, which are approximation algorithms for problems that are generalization of the problem of approximating the smallest 2-vertex-connected spanning subgraph of 2-vertex-connected directed graph. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 25 条
[1]   Dominators in linear time [J].
Alstrup, S ;
Harel, D ;
Lauridsen, PW ;
Thorup, M .
SIAM JOURNAL ON COMPUTING, 1999, 28 (06) :2117-2132
[2]  
Beldiceanu N, 2005, LECT NOTES COMPUT SC, V3524, P64
[3]   LINEAR-TIME ALGORITHMS FOR DOMINATORS AND OTHER PATH-EVALUATION PROBLEMS [J].
Buchsbaum, Adam L. ;
Georgiadis, Loukas ;
Kaplan, Haim ;
Rogers, Anne ;
Tarjan, Robert E. ;
Westbrook, Jeffery R. .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1533-1573
[4]   Approximating minimum-size k-connected spanning subgraphs via matching [J].
Cheriyan, J ;
Thurimella, R .
SIAM JOURNAL ON COMPUTING, 2000, 30 (02) :528-560
[5]  
Cormen T. H., 2009, Introduction to Algorithms
[6]  
Diestel R., 2000, GRAPH THEORY, P43
[7]  
Erusalimskii Ya. M., 1980, Cybernetics, V16, P41, DOI 10.1007/BF01099359
[8]  
Firmani Donatella, 2012, Experimental Algorithms. Proceedings 11th International Symposium, SEA 2012, P195, DOI 10.1007/978-3-642-30850-5_18
[9]   Using expander graphs to find vertex connectivity [J].
Gabow, Harold N. .
JOURNAL OF THE ACM, 2006, 53 (05) :800-844
[10]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness