Some Symmetric Identities Involving Fubini Polynomials and Euler Numbers

被引:13
作者
Zhao Jianhong [1 ]
Chen Zhuoyu [2 ]
机构
[1] Lijiang Teachers Coll, Dept Teachers Educ, Lijiang 674199, Peoples R China
[2] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 08期
关键词
Fubini polynomials; Euler numbers; symmetric identities; elementary method; computational formula; FIBONACCI; INVARIANT;
D O I
10.3390/sym10080303
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this paper is to use elementary methods and the recursive properties of a special sequence to study the computational problem of one kind symmetric sums involving Fubini polynomials and Euler numbers, and give an interesting computational formula for it. At the same time, we also give a recursive calculation method for the general case.
引用
收藏
页数:6
相关论文
共 17 条
[1]   Identities and generating functions on Chebyshev polynomials [J].
Cesarano, Clemente .
GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (03) :427-440
[2]   Chebyshev polynomials and their some interesting applications [J].
Chen Li ;
Zhang Wenpeng .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[3]  
Feng R-Q., 2015, COMBINATORIAL MATH
[4]  
He Y., 2013, ADV DIFFER EQU-NY, V2013, P246
[5]   A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS [J].
Kilar, Neslihan ;
Simsek, Yilmaz .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (05) :1605-1621
[6]  
김택연, 2017, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V20, P521
[7]   Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3 [J].
Kim, Dae San ;
Park, Kyoung Ho .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5096-5104
[8]   Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on a"currency sign p [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (01) :93-96
[9]  
KIM T, 2018, SYMMETRY-BASEL, V10, DOI DOI 10.3390/sym10060219
[10]   AN IDENTITY OF SYMMETRY FOR THE DEGENERATE FROBENIUS-EULER POLYNOMIALS [J].
Kim, Taekyun ;
Kim, Dae San .
MATHEMATICA SLOVACA, 2018, 68 (01) :239-243