Rational numbers with purely periodic β-expansion

被引:15
作者
Adamczewski, Boris [1 ]
Frougny, Christiane [2 ,3 ]
Siegel, Anne [4 ]
Steiner, Wolfgang [5 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Paris 08, F-75205 Paris 13, France
[3] LIAFA, UMR 7089, F-75205 Paris 13, France
[4] Univ Rennes 1, CNRS, UMR INRIA IRISA 6074, F-35042 Rennes, France
[5] Univ Paris 07, CNRS, LIAFA UMR 7089, F-75205 Paris 13, France
关键词
PISOT-NUMBERS; SYSTEMS;
D O I
10.1112/blms/bdq019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study real numbers beta with the curious property that the beta-expansion of all sufficiently small positive rational numbers is purely periodic. It is known that such real numbers have to be Pisot numbers which are units of the number field they generate. We complete known results due to Akiyama to characterize algebraic numbers of degree 3 that enjoy this property. This extends results previously obtained in the case of degree 2 by Schmidt, Hama and Imahashi. Let gamma(beta) denote the supremum of the real numbers c in (0, 1) such that all positive rational numbers less than c have a purely periodic beta-expansion. We prove that gamma(beta) is irrational for a class of cubic Pisot units that contains the smallest Pisot number eta. This result is motivated by the observation of Akiyama and Scheicher that gamma(eta) = 0.666 666 666 086 ... is surprisingly close to 2/3.
引用
收藏
页码:538 / 552
页数:15
相关论文
共 23 条
[11]  
[Anonymous], 1992, ERGOD THEOR DYN SYST
[12]  
Berthe V., 2005, INTEGERS, V5, pA02
[13]   Purely periodic β-expansions in the Pisot non-unit case [J].
Berthe, Valerie ;
Siegel, Anne .
JOURNAL OF NUMBER THEORY, 2007, 127 (02) :153-172
[14]  
Falconer K. J., 1986, CAMBRIDGE TRACTS MAT, V85
[15]  
Hama M., 1997, Commentarii mathematici Universitatis Sancti Pauli, V46, P103
[16]   Purely periodic β-expansions with Pisot unit base [J].
Ito, S ;
Rao, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) :953-964
[17]  
MIGNOTTE M, 1984, CR ACAD SCI I-MATH, V298, P21
[18]  
Parry W., 1960, Acta Math. Acad. Sci. Hung, V11, P401, DOI [10.1007/BF02020954, DOI 10.1007/BF02020954]
[19]  
RAUZY G, 1982, B SOC MATH FR, V110, P147
[20]  
Renyi A., 1957, Acta Math. Acad. Sci. Hung, V8, P477, DOI 10.1007/BF02020331