Numerical Solution of Convection-Diffusion Equations Using a Nonlinear Method of Upwind Type

被引:5
|
作者
Knobloch, Petr [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
关键词
Finite element method; Convection-diffusion equations; Upwinding; Mizukami-Hughes method; Discrete maximum principle; DIMINISHING SOLD METHODS; SPURIOUS OSCILLATIONS; DOMINATED FLOWS; FORMULATION;
D O I
10.1007/s10915-008-9260-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical solution of convection-diffusion equations using the Mizukami-Hughes method which is a nonlinear method of upwind type using conforming piecewise linear triangular finite elements. We extend this method to the whole range of the diffusion parameter whereas the original method was introduced for the convection-dominated regime only. We prove that the extended method satisfies the discrete maximum principle and illustrate its properties by means of numerical results.
引用
收藏
页码:454 / 470
页数:17
相关论文
共 50 条
  • [1] Numerical Solution of Convection–Diffusion Equations Using a Nonlinear Method of Upwind Type
    Petr Knobloch
    Journal of Scientific Computing, 2010, 43 : 454 - 470
  • [2] UPWIND SPLITTING SCHEME FOR CONVECTION-DIFFUSION EQUATIONS
    梁栋
    芮洪兴
    程爱杰
    Numerical Mathematics A Journal of Chinese Universities(English Series), 2000, (01) : 45 - 54
  • [3] A modified upwind difference domain decomposition method for convection-diffusion equations
    Li, Changfeng
    Yuan, Yirang
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (07) : 1584 - 1598
  • [4] An upwind finite volume method for convection-diffusion equations on rectangular mesh
    Tan, Jiawei
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 159 - 165
  • [5] Numerical Analysis of Convection-Diffusion Using a Modified Upwind Approach in the Finite Volume Method
    Hussain, Arafat
    Zheng, Zhoushun
    Anley, Eyaya Fekadie
    MATHEMATICS, 2020, 8 (11) : 1 - 21
  • [6] Upwind difference scheme for fuzzy convection-diffusion equations
    Zhang, Chuanlin
    Ye, Guoju
    Liu, Wei
    Liu, Xuelong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 223 : 351 - 367
  • [7] A numerical method for two-dimensional transient nonlinear convection-diffusion equations
    Meng, Xiangyuan
    Huang, Mei
    Wang, Boxue
    Ouyang, Xiaoping
    Huang, Yanping
    Chen, Denggao
    Cheng, Yanting
    Li, Yaodi
    ANNALS OF NUCLEAR ENERGY, 2024, 205
  • [8] Numerical solution of Convection-Diffusion equations with memory term based on sinc method
    Fahim, Atefeh
    Araghi, Mohammad Ali Fariborzi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (03): : 380 - 395
  • [9] A New Numerical Method for Solving Convection-Diffusion Equations
    Ding, Hengfei
    Zhang, Yuxin
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 463 - 470
  • [10] APPROXIMATE SOLUTION OF CONVECTION-DIFFUSION EQUATIONS USING A HAAR WAVELET METHOD
    Singh, Inderdeep
    Kumar, Sheo
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 143 - 154