Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis

被引:53
作者
Lin, Huangjing [1 ]
Chen, Hao [1 ]
Wang, Xi [1 ]
Wang, Qiong [2 ]
Wang, Liansheng [3 ]
Heng, Pheng-Ann [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing, Peoples R China
[3] Xiamen Univ, Dept Comp Sci, Xiamen, Peoples R China
关键词
Digital pathology; Papanicolaou (PAP) smears; Whole slide image; Deep learning; Cervical cancer analysis; SEGMENTATION; CANCER; CYTOPLASM; SMEARS;
D O I
10.1016/j.media.2021.101955
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cervical cancer has been one of the most lethal cancers threatening women's health. Nevertheless, the incidence of cervical cancer can be effectively minimized with preventive clinical management strategies, including vaccines and regular screening examinations. Screening cervical smears under microscope by cytologist is a widely used routine in regular examination, which consumes cytologists' large amount of time and labour. Computerized cytology analysis appropriately caters to such an imperative need, which alleviates cytologists' workload and reduce potential misdiagnosis rate. However, automatic analysis of cervical smear via digitalized whole slide images (WSIs) remains a challenging problem, due to the extreme huge image resolution, existence of tiny lesions, noisy dataset and intricate clinical definition of classes with fuzzy boundaries. In this paper, we design an efficient deep convolutional neural network (CNN) with dual-path (DP) encoder for lesion retrieval, which ensures the inference efficiency and the sensitivity on both tiny and large lesions. Incorporated with synergistic grouping loss (SGL), the network can be effectively trained on noisy dataset with fuzzy inter-class boundaries. Inspired by the clinical diagnostic criteria from the cytologists, a novel smear-level classifier, i.e., rule-based risk stratification (RRS), is proposed for accurate smear-level classification and risk stratification, which aligns reasonably with intricate cytological definition of the classes. Extensive experiments on the largest dataset including 19,303 WSIs from multiple medical centers validate the robustness of our method. With high sensitivity of 0.907 and specificity of 0.80 being achieved, our method manifests the potential to reduce the workload for cytologists in the routine practice. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 69 条
[1]  
[Anonymous], 2014, Comput. Sci.
[2]  
[Anonymous], 1974, Comput. Graph. Image Process., V3, P350, DOI DOI 10.1016/0146-664X(74)90029-X
[3]  
[Anonymous], 2019, INT C MED IM COMP CO, DOI DOI 10.1007/978-3-030-32239-7_52
[4]  
[Anonymous], 2016, DEEP LEARNING IDENTI
[5]  
[Anonymous], 2017, DETECTING CANCER MET
[6]   Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis [J].
Arbyn, Marc ;
Weiderpass, Elisabete ;
Bruni, Laia ;
de Sanjose, Silvia ;
Saraiya, Mona ;
Ferlay, Jacques ;
Bray, Freddie .
LANCET GLOBAL HEALTH, 2020, 8 (02) :E191-E203
[7]   Unsupervised cell nucleus segmentation with active contours [J].
Bamford, P ;
Lovell, B .
SIGNAL PROCESSING, 1998, 71 (02) :203-213
[8]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[9]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[10]   Novel Chromatin Texture Features for the Classification of Pap Smears [J].
Bejnordi, Babak Ehteshami ;
Moshavegh, Ramin ;
Sujathan, K. ;
Malm, Patrik ;
Bengtsson, Ewert ;
Mehnert, Andrew .
MEDICAL IMAGING 2013: DIGITAL PATHOLOGY, 2013, 8676