Stochastic differential equations for fractional Brownian motions

被引:20
作者
Coutin, L [1 ]
Qian, ZM [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabilites, F-31062 Toulouse 4, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 01期
关键词
D O I
10.1016/S0764-4442(00)01594-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct via dyadic approximations a canonical geometric rough path in the sense of [7] associated to a fractional Brownian motion with Hurst parameter h, h epsilon]1/4, 1/2[. Therefore, we obtain a Wong-Zakai type approximation theorem for solutions of stochastic differential equations driven by these fractional Brownian motions. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 12 条
[1]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[2]  
BASS RF, 1999, EXTENDING WONG ZAKAI
[3]  
CARMONA P, STOCHASTIC INTEGRATI
[4]  
COUTIN L, STOCHASTIC ANAL ROUG
[5]  
Eugene W., 1965, INT J ENGINEERING SC, V3, P213, DOI 10.1016/0020-7225(65)90045-5
[6]  
Hambly BM, 1998, ANN PROBAB, V26, P132
[7]  
LEDOUX M, 1999, LEVY WIENER PROCESSE
[8]   Flow of diffeomorphisms induced by a geometric multiplicative functional [J].
Lyons, T ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (01) :91-119
[9]  
Lyons T, 1994, MATH RES LETT, V1, P451
[10]   Differential equations driven by rough signals [J].
Lyons, TJ .
REVISTA MATEMATICA IBEROAMERICANA, 1998, 14 (02) :215-310