Simulations of melting performance enhancement for a PCM embedde d in metal periodic structures

被引:43
作者
Zhao, Chunrong [1 ]
Opolot, Michael [1 ]
Liu, Ming [2 ]
Bruno, Frank [2 ]
Mancin, Simone [3 ]
Flewell-Smith, Ross [2 ]
Hooman, Kamel [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[2] Univ South Australia, Future Ind Inst, Mawson Lakes Blvd, Mawson Lakes, SA 5095, Australia
[3] Univ Padua, Dept Management & Engn, Stradella S Nicola 3, I-36100 Vicenza, Italy
关键词
PCM; Critical cell size; Numerical simulation; Effective thermal conductivity;
D O I
10.1016/j.ijheatmasstransfer.2020.120853
中图分类号
O414.1 [热力学];
学科分类号
摘要
To overcome the inherent poor thermal conductivity of most phase change materials (PCM), inserting highly thermally conductive wire nets with periodic structures into them have been proposed. Numerical simulations have been extensively conducted to determine critical cell size and the effect of cell height and interface gap thickness on the heat transfer within the PCM. In addition, predictive correlations of the effective thermal conductivity were put forward. The simulated results indicate that: for structures with the same porosity, the critical cell size gradually decreases as the thermal conductivity of the wire net (ligament material) increases. For the proposed periodic structure embedded in the considered computational domain with 0.90 porosity, the critical pores per inch (PPI) for copper ligaments is approximately 10 PPI, while for stainless steel, it is approximately 3-5 PPI; a shorter cell height with a lower porosity shortens the melting time, therefore, stacking inexpensive metal wire is considered as an interesting alternative to commercially produced metal foams. Moreover, non-brazed scenarios lead to longer melting times, more than three times, compared to a perfectly brazed case. Furthermore, the effective thermal conductivity of the proposed periodic structure has been numerically calculated, which agrees well with some models available in the literature. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Effect of microstructure on melting in metal-foam/paraffin composite phase change materials [J].
Abishek, S. ;
King, A. J. C. ;
Nadim, N. ;
Mullins, B. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :135-144
[2]   Method to improve geometry for heat transfer enhancement in PCM composite heat sinks [J].
Akhilesh, R ;
Narasimhan, A ;
Balaji, C .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (13) :2759-2770
[3]   Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
APPLIED THERMAL ENGINEERING, 2013, 53 (01) :147-156
[4]   Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units [J].
Alhusseny, Ahmed ;
Al-Zurfi, Nabeel ;
Nasser, Adel ;
Al-Fatlawi, Ali ;
Aljanabi, Mohanad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 150
[5]   Thermophysical properties of high porosity metal foams [J].
Bhattacharya, A ;
Calmidi, VV ;
Mahajan, RL .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (05) :1017-1031
[6]   On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam [J].
Boomsma, K ;
Poulikakos, D .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (04) :827-836
[7]   The effective thermal conductivity of high porosity fibrous metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :466-471
[8]   Nano-PCMs for enhanced energy storage and passive cooling applications [J].
Colla, Laura ;
Fedele, Laura ;
Mancin, Simone ;
Danza, Ludovico ;
Manca, Oronzio .
APPLIED THERMAL ENGINEERING, 2017, 110 :584-589
[9]   Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: A review [J].
Dhaidan, Nabeel S. ;
Khodadadi, J. M. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (03)
[10]   Numerical model for the thermal behavior of thermocline storage tanks [J].
Ehtiwesh, Ismael A. S. ;
Sousa, Antonio C. M. .
HEAT AND MASS TRANSFER, 2018, 54 (03) :831-839