Parameter identification of induction motor based on particle swarm optimization

被引:12
|
作者
Picardi, C. [1 ]
Rogano, N. [1 ]
机构
[1] Univ Calabria, Via Pietro Bucci 42C, I-87036 Arcavacata Di Rende, Italy
关键词
induction motors; parameter identification; genetic algorithm; optimization methods;
D O I
10.1109/SPEEDAM.2006.1649908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the application of the particle swarm optimization (PSO) to the parameter identification of the induction motor. A suitable model of the motor with a specific parameter vector, including electromagnetic and mechanical parameters, is given. The simulation results, presented in the paper, mainly have the purpose to compare the PSO, the genetic algorithm (GA) and a modified PSO with a function "stretching" (SPSO) in terms of the behaviours of the best fitness and the average fitness versus the number of evaluations and of the reconstruction of the output variables by means of the identified parameters.
引用
收藏
页码:968 / +
页数:2
相关论文
共 50 条
  • [41] Sensorless fuzzy control algorithm for permanent magnet synchronous motor based on particle swarm optimization parameter identification and harmonic extraction
    Zhang, Kai
    Qing, Lu
    Liu, Gai
    Quan, Li
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2024, 38 (08) : 877 - 897
  • [42] Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization
    Mohammadi, Hamid Reza
    Akhavan, Ali
    JOURNAL OF ENGINEERING, 2014, 2014
  • [43] Application of adaptive particle swarm optimization algorithm in system identification and parameter optimization
    Li, Xiaobin
    Kou, Demin
    Yu, Bo
    Jiang, Yun
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2007, 28 (SUPPL. 5): : 341 - 345
  • [44] Parameter tuning of micro-satellite motor based on optimized particle swarm optimization algorithm
    Zhou, Hang
    Wang, Hao
    Jin, Zhonghe
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (10): : 13 - 23
  • [45] A parameter selection strategy for particle swarm optimization based on particle positions
    Zhang, Wei
    Ma, Di
    Wei, Jin-jun
    Liang, Hai-feng
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (07) : 3576 - 3584
  • [46] Model-based fault diagnosis of induction motor eccentricity using particle swarm optimization
    Nikranjbar, A.
    Ebrahimi, M.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2009, 223 (03) : 607 - 615
  • [47] Total sliding-mode-based particle swarm optimization control for linear induction motor
    Wai, Rong-Jong
    Lin, Yeou-Fu
    Chuang, Kun-Lun
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (05): : 2755 - 2780
  • [48] Parameter optimization of ant colony algorithm based on particle swarm optimization
    Dai, Yuntao
    Liu, Liqiang
    Wang, Shujuan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1266 - +
  • [49] A Consideration of Parameter Identification of a Linear Stage Using Particle Swarm Optimization
    Watanabe, Marino
    Nakamura, Yukinori
    Wakui, Shinji
    2015 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2015, : 149 - 153
  • [50] Application of particle swarm optimization in parameter identification of power electronic circuits
    Lai, Guosheng
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1706 - 1709