Parameter identification of induction motor based on particle swarm optimization

被引:13
|
作者
Picardi, C. [1 ]
Rogano, N. [1 ]
机构
[1] Univ Calabria, Via Pietro Bucci 42C, I-87036 Arcavacata Di Rende, Italy
来源
2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3 | 2006年
关键词
induction motors; parameter identification; genetic algorithm; optimization methods;
D O I
10.1109/SPEEDAM.2006.1649908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the application of the particle swarm optimization (PSO) to the parameter identification of the induction motor. A suitable model of the motor with a specific parameter vector, including electromagnetic and mechanical parameters, is given. The simulation results, presented in the paper, mainly have the purpose to compare the PSO, the genetic algorithm (GA) and a modified PSO with a function "stretching" (SPSO) in terms of the behaviours of the best fitness and the average fitness versus the number of evaluations and of the reconstruction of the output variables by means of the identified parameters.
引用
收藏
页码:968 / +
页数:2
相关论文
共 50 条
  • [31] Parameter Identification of Primary Side in Wireless Charging System Based on Adaptive Particle Swarm Optimization
    Xing, Chen
    Liu, Tingzhang
    Zhao, Jianfei
    Lin, Yue
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1667 - 1671
  • [32] Parameter Identification of Ship Maneuvering Model Based on Support Vector Machines and Particle Swarm Optimization
    Luo, Weilin
    Soares, C. Guedes
    Zou, Zaojian
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (03):
  • [33] Induction Motor Variable Inductance Parameter Identification
    Halak, Filip
    Bensic, Tin
    Barukcic, Marinko
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST), 2017, : 315 - 320
  • [34] On-site efficiency evaluation of three-phase induction motor based on particle swarm optimization
    Sakthivel, V. P.
    Subramanian, S.
    ENERGY, 2011, 36 (03) : 1713 - 1720
  • [35] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [36] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +
  • [37] Kinematic Parameter Identification for a Parallel Robot with an Improved Particle Swarm Optimization Algorithm
    Yu, Dayong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [38] Advanced Particle Swarm Optimization for Parameter Identification of Three-Phase DFIM
    Mahdavi, M.
    Jalilzadeh, S.
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 580 - +
  • [39] Parameter identification of chaotic dynamic systems through an improved particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Fateh, Mohammad-Mehdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (05) : 3714 - 3720
  • [40] Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization
    Yang, Xiao
    Chen, Long
    Xu, Xing
    Wang, Wei
    Xu, Qiling
    Lin, Yuzhen
    Zhou, Zhiguang
    ENERGIES, 2017, 10 (11):