Parameter identification of induction motor based on particle swarm optimization

被引:13
|
作者
Picardi, C. [1 ]
Rogano, N. [1 ]
机构
[1] Univ Calabria, Via Pietro Bucci 42C, I-87036 Arcavacata Di Rende, Italy
来源
2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3 | 2006年
关键词
induction motors; parameter identification; genetic algorithm; optimization methods;
D O I
10.1109/SPEEDAM.2006.1649908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the application of the particle swarm optimization (PSO) to the parameter identification of the induction motor. A suitable model of the motor with a specific parameter vector, including electromagnetic and mechanical parameters, is given. The simulation results, presented in the paper, mainly have the purpose to compare the PSO, the genetic algorithm (GA) and a modified PSO with a function "stretching" (SPSO) in terms of the behaviours of the best fitness and the average fitness versus the number of evaluations and of the reconstruction of the output variables by means of the identified parameters.
引用
收藏
页码:968 / +
页数:2
相关论文
共 50 条
  • [1] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [2] On line parameter identification of an induction motor, using improved particle swarm optimization
    Chen Guangyi
    Wei, Guo
    Huang Kaisheng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 745 - +
  • [3] Stator resistance identification for induction motor based on particle swarm optimization neural network observer
    Yang, Tong-Guang
    Gui, Wei-Hua
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2015, 19 (02): : 89 - 95
  • [4] Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
    Zhou, Shuai
    Wang, Dazhi
    Ni, Yongliang
    Song, Keling
    Li, Yanming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2187 - 2207
  • [5] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [6] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [7] Parameter Identification of Train basic resistance Based on Particle Swarm Optimization
    Li Tianxiang
    Yang Hang
    Wang Chuanru
    Wang Qingyuan
    Sun Pengfei
    Feng Xiaoyun
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1572 - 1577
  • [8] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [9] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [10] Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
    Sangdani, M. H.
    Tavakolpour-Saleh, A. R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (09): : 1797 - 1802