Layer-by-Layer Assembly of Polyelectrolytes in Nanofluidic Devices

被引:53
作者
DeRocher, Jonathan P. [1 ]
Mao, Pan [2 ]
Han, Jongyoon [3 ,4 ]
Rubner, Michael F. [5 ]
Cohen, Robert E. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
MICROFLUIDIC DEVICES; SURFACE FUNCTIONALIZATION; ANTIREFLECTION COATINGS; TEMPLATE SYNTHESIS; MULTILAYER FILMS; FLOW; TRANSITIONS; SEPARATION; MOLECULES; TRANSPORT;
D O I
10.1021/ma902451s
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A hybrid micro-/nanofluidic device which contains an array of parallel nanochannels has been employed to study polyelectrolyte multilayer (PEM) deposition in confined geometries. Layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS) at pH 4 and sail concentrations ranging from 0.1 to 1 M was used to conformally coat the nanochannel walls, systematically narrowing the channel width from 222 to 11 nm in the wet state. The thicknesses of confined multilayers were measured using SEM and these results were compared with those obtained oil planar, unconfined Surfaces. A procedure for direct measurement of the gap thickness using dc conductance was also developed. LbL assembly in the nanochannels resulted in lower bilayer thicknesses than those obtained oil planar surfaces. This observation is attributed to the surface charge-induced depletion of unadsorbed polyelectrolytes within the channel. The ability to conformally coat the walls of the nanochannels with functional PEMs opens up new possibilities in the design of active nanochannel devices.
引用
收藏
页码:2430 / 2437
页数:8
相关论文
共 62 条
[1]   Highly flexible polyelectrolyte nanotubes [J].
Ai, SF ;
Lu, G ;
He, Q ;
Li, JB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11140-11141
[2]   Layer-by-layer assembly of polyelectrolytes in nanopores [J].
Alem, Halima ;
Blondeau, Francoise ;
Glinel, Karine ;
Demoustier-Champagne, Sophie ;
Jonas, Alain M. .
MACROMOLECULES, 2007, 40 (09) :3366-3372
[3]   Probing the conformation of polyelectrolytes in mesoporous silica spheres [J].
Angelatos, Alexandra S. ;
Wang, Yajun ;
Caruso, Frank .
LANGMUIR, 2008, 24 (08) :4224-4230
[4]   Tailoring photonic crystals with nanometer-scale precision using polyelectrolyte multilayers [J].
Arsenault, AC ;
Halfyard, J ;
Wang, Z ;
Kitaev, V ;
Ozin, GA ;
Manners, I ;
Mihi, A ;
Míguez, H .
LANGMUIR, 2005, 21 (02) :499-503
[5]   Plastic microfluidic devices modified with polyelectrolyte multilayers [J].
Barker, SLR ;
Tarlov, MJ ;
Canavan, H ;
Hickman, JJ ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2000, 72 (20) :4899-4903
[6]   Control of flow direction in microfluidic devices with polyelectrolyte multilayers [J].
Barker, SLR ;
Ross, D ;
Tarlov, MJ ;
Gaitan, M ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2000, 72 (24) :5925-5929
[7]  
BAUR J, 1997, THESIS MIT CAMBRIDGE
[8]   WEAK POLYELECTROLYTES BETWEEN 2 SURFACES - ADSORPTION AND STABILIZATION [J].
BOHMER, MR ;
EVERS, OA ;
SCHEUTJENS, JMHM .
MACROMOLECULES, 1990, 23 (08) :2288-2301
[9]   STIFF (DNA) AND FLEXIBLE (NAPSS) POLYELECTROLYTE CHAIN EXPANSION AT VERY-LOW SALT CONCENTRATION [J].
BOROCHOV, N ;
EISENBERG, H .
MACROMOLECULES, 1994, 27 (06) :1440-1445
[10]   Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials [J].
Boulmedais, F ;
Frisch, B ;
Etienne, O ;
Lavalle, P ;
Picart, C ;
Ogier, J ;
Voegel, JC ;
Schaaf, P ;
Egles, C .
BIOMATERIALS, 2004, 25 (11) :2003-2011