New families of periodic orbits for a galactic potential

被引:12
|
作者
de Debustos, Maria T. [1 ,2 ]
Guirao, Juanl. L. G. [3 ]
Llibre, Jaume [4 ]
Vera, Juan A. [5 ]
机构
[1] Univ Salamanca, Dept Matemat Aplicada, E-37008 Salamanca, Castilla, Spain
[2] Univ Salamanca, E-37008 Salamanca, Leon, Spain
[3] Univ Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
[4] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[5] Univ Politecn Cartagena, Acad Gen Aire, Ctr Univ Defensa, Murcia 30720, Spain
关键词
Galactic potential; Family of periodic orbits; Averaging theory; RESONANCE P-Q; HAMILTONIAN-SYSTEMS; OSCILLATORS;
D O I
10.1016/j.chaos.2015.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find analytically new families of periodic orbits of a Hamiltonian system which describes the local motion in the central area of a galaxy, whose dynamics have been studied by many authors. (C) 2015 Elsevier Ltd All rights reserved.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [31] Classification of periodic orbits for systems with backlash
    Shukla, Amit
    Besselink, Bart
    Fey, Rob H. B.
    Nijmeijer, Henk
    CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 131 - 144
  • [32] Non-integrability, stability and periodic solutions for a quartic galactic potential in a rotating reference frame
    A. A. Elmandouh
    A. G. Ibrahim
    Astrophysics and Space Science, 2020, 365
  • [33] Monoparametric Families of Orbits Produced by Planar Potentials
    Kotoulas, Thomas
    AXIOMS, 2023, 12 (05)
  • [34] A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems
    Ortega, JP
    Ratiu, TS
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (02) : 131 - 159
  • [35] PERIODIC ORBITS OF PERTURBED NON-AXIALLY SYMMETRIC POTENTIALS IN 1:1:1 AND 1:1:2 RESONANCES
    Corbera, Montserrat
    Llibre, Jaume
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2299 - 2337
  • [36] Periodic orbits and integrability of Rocard's system
    Hu, Xinhao
    Tang, Yilei
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 475
  • [37] A note on the periodic orbits of a kind of Duffing equations
    Llibre, Jaume
    Rodrigues, Ana
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8358 - 8365
  • [38] Periodic Orbits of the Planar Anisotropic Kepler Problem
    Abouelmagd, Elbaz I.
    Llibre, Jaume
    Garcia Guirao, Juan Luis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [39] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [40] The Hörmander index of symmetric periodic orbits
    Urs Frauenfelder
    Otto van Koert
    Geometriae Dedicata, 2014, 168 : 197 - 205