Fractional Orlicz-Sobolev embeddings

被引:42
作者
Alberico, Angela [1 ]
Cianchi, Andrea [2 ]
Pick, Lubos [3 ]
Slavikova, Lenka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2021年 / 149卷
关键词
Fractional Orlicz-Sobolev spaces; Sobolev embeddings; Hardy inequalities; Orlicz spaces; Rearrangement-invariant spaces; GAGLIARDO-NIRENBERG INEQUALITIES; LIMITING EMBEDDINGS; INTEGRAL-OPERATORS; ORDER SOBOLEV; REGULARITY; THEOREM; SPACES; IMBEDDINGS; EXTENSION; BOUNDARY;
D O I
10.1016/j.matpur.2020.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal Orlicz target space is exhibited for embeddings of fractional-order Orlicz-Sobolev spaces in R-n. An improved embedding with an Orlicz-Lorentz target space, which is optimal in the broader class of all rearrangement-invariant spaces, is also established. Both spaces of order s is an element of (0, 1), and higher-order spaces are considered. Related Hardy type inequalities are proposed as well. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:216 / 253
页数:38
相关论文
共 80 条
[1]  
Alberico A., 2020, REND LINCEI MAT APPL
[2]  
Alberico A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09785-z
[3]   SHARP SOBOLEV TYPE EMBEDDINGS ON THE ENTIRE EUCLIDEAN SPACE [J].
Alberico, Angela ;
Cianchi, Andrea ;
Pick, Lubos ;
Slavikova, Lenka .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) :2011-2037
[4]  
[Anonymous], 1989, J. Amer. Math. Soc.
[5]  
[Anonymous], 1973, J. Sov. Math., DOI DOI 10.1007/BF01083775
[6]  
[Anonymous], 1978, Scripta Series in Mathematics
[7]  
Aronszajn N., 1955, TECH REPORT U KANSAS, V14, P77
[8]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[9]   EMBEDDING THEOREMS IN THE FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS [J].
Bahrouni, Sabri ;
Ounaies, Hichem .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) :2917-2944
[10]  
Barrios B, 2014, ANN SCUOLA NORM-SCI, V13, P609