Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation

被引:21
|
作者
Zhang, Jingjing [1 ,2 ]
Ma, Jiaxiang [1 ]
Liu, Dongmei [1 ]
Liu, Dongqing [1 ]
Han, Yu [1 ]
Xu, Ying [4 ]
Cui, Fuyi [3 ]
Wang, Wei [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Shenzhen Water Grp Co Ltd, Res & Dev Ctr, Shenzhen 518000, Peoples R China
[3] Chongqing Univ, Coll Urban Construct & Environm Engn, Chongqing 400000, Peoples R China
[4] Zhengzhou Univ, Sch Ecol & Environm, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; GENERATION; MEMBRANE;
D O I
10.1039/d2ta00838f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a localized interfacial activation strategy is proposed to promote solar evaporation. Considering that surfactants can weaken water interaction but on the other hand block evaporation due to physical coverage, surfactant-like graphene oxide (GO) and polydopamine (PDA) are assembled to be an interconnected porous photothermal matrix (IPPM) via an acid-assembly method. Hence, the activation interface is physically localized at the micro-frame surface of IPPM (composed of an rGO frame and PDA with an outward-facing indole structure), which can effectively decrease the interaction energy of interfacial water molecules. Meanwhile, the interconnected water channels in the IPPM ensure adequate water supplementation for interfacial evaporation. Consequently, the IPPM not only displays a high performance of 2.2 kg m(-2) h(-1) under 1 sun irradiation, but in particular exhibits an unparalleled advantage with a flux of over 10 kg m(-2) h(-1) under concentrated irradiation below 5 sun. The present development takes a new step towards the practical application of solar evaporation in the future.
引用
收藏
页码:10548 / 10556
页数:9
相关论文
共 50 条
  • [21] Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies
    He, Fang
    Wu, Xiaochun
    Gao, Jie
    Wang, Zhenxing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (48) : 27121 - 27139
  • [22] Manipulating light trapping and water vaporization enthalpy via porous hybrid nanohydrogels for enhanced solar-driven interfacial water evaporation with antibacterial ability
    Li, Yaling
    Zhao, Mingyu
    Xu, Yunshi
    Chen, Leilei
    Jiang, Ting
    Jiang, Weicun
    Yang, Shuguang
    Wang, Yi
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) : 26769 - 26775
  • [23] MXene/aramid nanofiber films enables highly efficient photothermal conversion for solar-driven water evaporation
    Zang, X.
    Qin, Y.
    Gu, M.
    Sun, Y.
    Huang, D.
    Ji, J.
    Xue, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24
  • [24] Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization
    Ding, Tianpeng
    Zhou, Yi
    Ong, Wei Li
    Ho, Ghim Wei
    MATERIALS TODAY, 2021, 42 : 178 - 191
  • [25] In-situ deposition to synthesize photothermal materials for enhanced solar-driven interfacial evaporation and gradient materials for electricity generation
    Hu, Luyang
    She, Jing
    Liao, Junjie
    Li, Fabing
    Zhou, Yufeng
    Zhang, Yumin
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [26] A fabric interpenetrating composite hydrospongels with permeability and evaporation enthalpy regulation for efficient solar-driven interfacial evaporation and water purification
    Xu, Bing
    Yao, Xingjie
    Zhang, Xinyu
    Chen, Feiyong
    Ma, Liang
    Fang, Shipeng
    Zhang, Xu
    Xu, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [27] Self-Floating Polydopamine/Polystyrene Composite Porous Structure via a NaCl Template Method for Solar-Driven Interfacial Water Evaporation
    Wang, Xiao
    Li, Zhen
    Wu, Xiaojing
    Liu, Bingjie
    Tian, Tian
    Ding, Yi
    Zhang, Haibo
    Li, Yuanli
    Liu, Ye
    Dai, Chunai
    POLYMERS, 2024, 16 (15)
  • [28] Distinct stage-wise environmental energy harvesting behaviors within solar-driven interfacial water evaporation coupled with convective airflow
    Zhang, Chenlin
    Shi, Yusuf
    Wang, Wenbin
    Li, Hongxia
    Li, Renyuan
    Hong, Seunghyun
    Wang, Peng
    NANO ENERGY, 2023, 107
  • [29] Hierarchically porous and high-strength carbon aerogel-based composite for solar-driven interfacial evaporation
    Gan, Zhicong
    Zhao, Shuang
    Zhang, Zhen
    Li, Kunfeng
    Fei, Zhifang
    Li, Xiaohua
    Zhang, Peng
    Yang, Zichun
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, 107 (02) : 388 - 400
  • [30] Carbon nanodots-based interfacial nanofluid for high-performance solar-driven water evaporation
    Canh, Nguyen Van
    Hang, Nguyen Thi Nhat
    Cuong, Nguyen Trong
    Hoa, Nguyen Hiep
    Tuyet, Cu Thi Anh
    Ha, Nguyen Ngoc
    Phong, Le Thi Hong
    Le, Phuoc Huu
    Luu, Tran Le
    Dao, Van-Duong
    Nguyen, Vanthan
    DIAMOND AND RELATED MATERIALS, 2024, 149