共 50 条
Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation
被引:21
|作者:
Zhang, Jingjing
[1
,2
]
Ma, Jiaxiang
[1
]
Liu, Dongmei
[1
]
Liu, Dongqing
[1
]
Han, Yu
[1
]
Xu, Ying
[4
]
Cui, Fuyi
[3
]
Wang, Wei
[1
]
机构:
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Shenzhen Water Grp Co Ltd, Res & Dev Ctr, Shenzhen 518000, Peoples R China
[3] Chongqing Univ, Coll Urban Construct & Environm Engn, Chongqing 400000, Peoples R China
[4] Zhengzhou Univ, Sch Ecol & Environm, Zhengzhou 450000, Peoples R China
基金:
中国国家自然科学基金;
关键词:
NANOPARTICLES;
GENERATION;
MEMBRANE;
D O I:
10.1039/d2ta00838f
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Herein, a localized interfacial activation strategy is proposed to promote solar evaporation. Considering that surfactants can weaken water interaction but on the other hand block evaporation due to physical coverage, surfactant-like graphene oxide (GO) and polydopamine (PDA) are assembled to be an interconnected porous photothermal matrix (IPPM) via an acid-assembly method. Hence, the activation interface is physically localized at the micro-frame surface of IPPM (composed of an rGO frame and PDA with an outward-facing indole structure), which can effectively decrease the interaction energy of interfacial water molecules. Meanwhile, the interconnected water channels in the IPPM ensure adequate water supplementation for interfacial evaporation. Consequently, the IPPM not only displays a high performance of 2.2 kg m(-2) h(-1) under 1 sun irradiation, but in particular exhibits an unparalleled advantage with a flux of over 10 kg m(-2) h(-1) under concentrated irradiation below 5 sun. The present development takes a new step towards the practical application of solar evaporation in the future.
引用
收藏
页码:10548 / 10556
页数:9
相关论文