Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian

被引:68
作者
Enriquez-Urzelai, Urtzi [1 ,2 ]
Kearney, Michael R. [3 ]
Nicieza, Alfredo G. [1 ,2 ]
Tingley, Reid [3 ,4 ]
机构
[1] UO, Dept Biol Organismos & Sistemas, Catedrat Rodrigo Uria S-N, Oviedo 33006, Spain
[2] UO, UMIB, CSIC, PA, Mieres, Spain
[3] Univ Melbourne, Sch BioSci, Parkville, Vic, Australia
[4] Monash Univ, Sch Biol Sci, Clayton, Vic, Australia
关键词
activity restrictions; global warming; Maxent; mechanistic niche modeling; microclimate; NicheMapR; thermal limits; SPECIES DISTRIBUTION MODELS; CLIMATE-CHANGE; THERMOREGULATORY BEHAVIOR; IMPROVE PREDICTIONS; THERMAL PHYSIOLOGY; CONTINENTAL-SCALE; COMMON FROG; WATER-LOSS; RESPONSES; DISTRIBUTIONS;
D O I
10.1111/gcb.14673
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive "proximate" (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those ("proximate") variables in correlative ecological niche models (Maxent) to assess their role in limiting the species' current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic ("distal") layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range-limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species' genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range-limiting processes, and can have substantial impacts on predictions of climate-induced range shifts.
引用
收藏
页码:2633 / 2647
页数:15
相关论文
共 107 条
[1]   The evolution of thermal physiology in ectotherms [J].
Angilletta, MJ ;
Niewiarowski, PH ;
Navas, CA .
JOURNAL OF THERMAL BIOLOGY, 2002, 27 (04) :249-268
[2]  
[Anonymous], 2016, DISMO SPECIES DISTRI
[3]   Validation of species-climate impact models under climate change [J].
Araújo, MB ;
Pearson, RG ;
Thuiller, W ;
Erhard, M .
GLOBAL CHANGE BIOLOGY, 2005, 11 (09) :1504-1513
[4]   Five (or so) challenges for species distribution modelling [J].
Araujo, Miguel B. ;
Guisan, Antoine .
JOURNAL OF BIOGEOGRAPHY, 2006, 33 (10) :1677-1688
[5]   Cryptic biodiversity loss linked to global climate change [J].
Balint, M. ;
Domisch, S. ;
Engelhardt, C. H. M. ;
Haase, P. ;
Lehrian, S. ;
Sauer, J. ;
Theissinger, K. ;
Pauls, S. U. ;
Nowak, C. .
NATURE CLIMATE CHANGE, 2011, 1 (06) :313-318
[6]   Seeing the woods for the trees - when is microclimate important in species distribution models? [J].
Bennie, Jonathan ;
Wilson, Robert J. ;
Maclean, Ilya M. D. ;
Suggitt, Andrew J. .
GLOBAL CHANGE BIOLOGY, 2014, 20 (09) :2699-2700
[7]   Potential effects of climate change on the distribution of the common frog Rana temporaria at its northern range margin [J].
Blank, Lior ;
Luoto, Miska ;
Merila, Juha .
ISRAEL JOURNAL OF ECOLOGY & EVOLUTION, 2013, 59 (03) :130-140
[8]   Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science [J].
Bonebrake, Timothy C. ;
Brown, Christopher J. ;
Bell, Johann D. ;
Blanchard, Julia L. ;
Chauvenet, Alienor ;
Champion, Curtis ;
Chen, I-Ching ;
Clark, Timothy D. ;
Colwell, Robert K. ;
Danielsen, Finn ;
Dell, Anthony I. ;
Donelson, Jennifer M. ;
Evengard, Birgitta ;
Ferrier, Simon ;
Frusher, Stewart ;
Garcia, Raquel A. ;
Griffis, Roger B. ;
Hobday, Alistair J. ;
Jarzyna, Marta A. ;
Lee, Emma ;
Lenoir, Jonathan ;
Linnetved, Hlif ;
Martin, Victoria Y. ;
McCormack, Phillipa C. ;
McDonald, Jan ;
McDonald-Madden, Eve ;
Mitchell, Nicola ;
Mustonen, Tero ;
Pandolfi, John M. ;
Pettorelli, Nathalie ;
Possingham, Hugh ;
Pulsifer, Peter ;
Reynolds, Mark ;
Scheffers, Brett R. ;
Sorte, Cascade J. B. ;
Strugnell, Jan M. ;
Tuanmu, Mao-Ning ;
Twiname, Samantha ;
Verges, Adriana ;
Villanueva, Cecilia ;
Wapstra, Erik ;
Wernberg, Thomas ;
Pecl, Gretta T. .
BIOLOGICAL REVIEWS, 2018, 93 (01) :284-305
[9]   Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia [J].
Briscoe, Natalie J. ;
Kearney, Michael R. ;
Taylor, Chris A. ;
Wintle, Brendan A. .
GLOBAL CHANGE BIOLOGY, 2016, 22 (07) :2425-2439
[10]   Stage-dependent physiological responses in a butterfly cause non-additive effects on phenology [J].
Briscoe, Natalie J. ;
Porter, Warren P. ;
Sunnucks, Paul ;
Kearney, Michael R. .
OIKOS, 2012, 121 (09) :1464-1472