Domain theoretic characterisations of quasi-metric completeness in terms of formal balls

被引:36
作者
Romaguera, Salvador [1 ]
Valero, Oscar [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46071 Valencia, Spain
[2] Univ Islas Baleares, Dept Ciencias Matemat & Informat, Palma De Mallorca 07122, Baleares, Spain
关键词
PARTIAL METRIZABILITY; COMPUTATIONAL MODEL; SPACES;
D O I
10.1017/S0960129510000010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We characterise those quasi-metric spaces (X, d) whose poset BX of formal balls satisfies the condition for every (x, r),(y, s) is an element of BX, (x, r) << (y, s) double left right arrow d(x, y) < r - s. (*) From this characterisation, we then deduce that a quasi-metric space (X, d) is Smyth-complete if and only if BX is a dcpo satisfying condition (*). We also give characterisations in terms of formal balls for sequentially Yoneda complete quasi-metric spaces and for Yoneda complete T-1 quasi-metric spaces. Finally, we discuss several properties of the Heckmann quasi-metric on the formal balls of any quasi-metric space.
引用
收藏
页码:453 / 472
页数:20
相关论文
共 35 条
[1]   The space of formal balls and models of quasi-metric spaces [J].
Ali-Akbari, M. ;
Honari, B. ;
Pourmahdian, M. ;
Rezaii, M. A. .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (02) :337-355
[2]  
[Anonymous], 1974, MATH MONOGRAPHS
[3]  
DICONCILIO A, 1971, REND ACAD SCI FIS MA, V38, P113
[4]   DYNAMICAL-SYSTEMS, MEASURES, AND FRACTALS VIA DOMAIN THEORY [J].
EDALAT, A .
INFORMATION AND COMPUTATION, 1995, 120 (01) :32-48
[5]   DOMAIN THEORY AND INTEGRATION [J].
EDALAT, A .
THEORETICAL COMPUTER SCIENCE, 1995, 151 (01) :163-193
[6]   A computational model for metric spaces [J].
Edalat, A ;
Heckmann, R .
THEORETICAL COMPUTER SCIENCE, 1998, 193 (1-2) :53-73
[7]   Computable Banach spaces via domain theory [J].
Edalat, A ;
Sünderhauf, P .
THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) :169-184
[8]  
ENGELKINA R, 1977, MONOGRAFIE MAT, V60
[9]  
FLAGG B, 1997, ELECT NOTES THEORETI, V6, P151, DOI DOI 10.1016/S1571-0661(05)80164-1
[10]  
Fletcher P., 1982, Quasi-Uniform Spaces