Derivation of the Time Dependent Gross-Pitaevskii Equation in Two Dimensions

被引:15
作者
Jeblick, Maximilian [1 ]
Leopold, Nikolai [2 ]
Pickl, Peter [3 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Duke Kunshan Univ, Duke Ave 8, Kunshan 215316, Peoples R China
[4] Ludwig Maximilians Univ Munchen, Theresienstr 39, D-80333 Munich, Germany
基金
欧洲研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; MEAN-FIELD APPROXIMATION; RIGOROUS DERIVATION; BOGOLIUBOV CORRECTION; INTERACTING BOSONS; PAIR EXCITATIONS; QUANTUM DYNAMICS; FLUCTUATIONS; EVOLUTION; ENERGY;
D O I
10.1007/s00220-019-03599-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrodinger equation and the Gross-Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by W beta(x) = N -1+2 beta W(N beta x), for any beta > 0, or to be given by V-N (x) = e(2N) V(e(N) x), for some spherical symmetric, nonnegative and compactly supported W, V. L-infinity (R-2, R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrodinger equation in trace norm. For the latter potential V-N we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
引用
收藏
页码:1 / 69
页数:69
相关论文
共 51 条
[1]  
Ammari Z, 2016, COMMUN MATH SCI, V14, P1417
[2]   A simple proof of convergence to the Hartree dynamics in Sobolev trace norms [J].
Anapolitanos, Ioannis ;
Hott, Michael .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[3]   BOSE-EINSTEIN CONDENSATION IN LOW-DIMENSIONAL TRAPS [J].
BAGNATO, V ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1991, 44 (11) :7439-7441
[4]   ADIABATIC APPROXIMATION OF THE SCHRODINGER-POISSON SYSTEM WITH A PARTIAL CONFINEMENT [J].
Ben Abdallah, Naoufel ;
Mehats, Florian ;
Pinaud, Olivier .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (03) :986-1013
[5]  
Benedikter N., 2016, Effective evolution equations from quantum dynamics, P57
[6]   Quantitative Derivation of the Gross-Pitaevskii Equation [J].
Benedikter, Niels ;
de Oliveira, Gustavo ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) :1399-1482
[7]  
Bo mann L, 2019, ARXIV190704547
[8]   Quantum Many-Body Fluctuations Around Nonlinear Schrodinger Dynamics [J].
Boccato, Chiara ;
Cenatiempo, Serena ;
Schlein, Benjamin .
ANNALES HENRI POINCARE, 2017, 18 (01) :113-191
[9]   Derivation of the 1d nonlinear Schrodinger equation from the 3d quantum many-body dynamics of strongly confined bosons [J].
Bossmann, Lea .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
[10]   Derivation of the 1d Gross-Pitaevskii Equation from the 3d Quantum Many-Body Dynamics of Strongly Confined Bosons [J].
Bossmann, Lea ;
Teufel, Stefan .
ANNALES HENRI POINCARE, 2019, 20 (03) :1003-1049