Equiangular lines in Cr (part II)

被引:5
作者
Et-Taoui, B [1 ]
机构
[1] Univ Haute Alsace, Math Lab, F-68093 Mulhouse, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2002年 / 13卷 / 04期
关键词
D O I
10.1016/S0019-3577(02)80027-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset S of a complex projective space is F-regular provided each two points of S have the same non-zero distance and each subset of three points of S has the same shape invariant. The aim of this paper is the determination for any odd integer r, of the largest integer n(r) such that Cpr-1 contains an F-regular subset of n(r) points. It is established that n(r) less than or equal to 2r - 2 for any odd integer r and n(1 + 2(s)) = 2(s+1) for any integer s.
引用
收藏
页码:483 / 486
页数:4
相关论文
共 7 条
[1]  
BREHM U, 1990, GEOMETRIAE DEDICATA, V33, P59
[2]   Congruence criteria for finite subsets of complex projective and complex hyperbolic spaces [J].
Brehm, U ;
Et-Taoui, B .
MANUSCRIPTA MATHEMATICA, 1998, 96 (01) :81-95
[3]   Equiangular lines in Cr [J].
Et-Taoui, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02) :201-207
[4]  
EtTaoui B, 1996, GEOMETRIAE DEDICATA, V63, P297
[5]   ORTHOGONAL MATRICES WITH ZERO DIAGONAL [J].
GOETHALS, JM ;
SEIDEL, JJ .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (05) :1001-&
[6]  
LEMMENS PWH, 1973, INDAG MATH, V35, P98
[7]  
Williamson J., 1944, Duke Mathematical Journal, V11, P65, DOI [10.1215/S0012-7094-44-01108-7, DOI 10.1215/S0012-7094-44-01108-7]