Critical constants for recurrence on groups of polynomial growth

被引:1
|
作者
Revelle, David [1 ]
Thompson, Russ [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2010年 / 15卷
基金
美国国家科学基金会;
关键词
nilpotent group; Schreier graph; random walk; recurrence; volume growth; NILPOTENT GROUPS; RANDOM-WALKS;
D O I
10.1214/EJP.v15-773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The critical constant for recurrence, c(rt), is an invariant of the quotient space H\G of a finitely generated group. The constant is determined by the largest moment a probability measure on G can have without the induced random walk on H\G being recurrent. We present a description of which subgroups of groups of polynomial volume growth are recurrent. Using this we show that for such recurrent subgroups c(rt) corresponds to the relative growth rate of H in G, and in particular c(rt) is an element of {0, 1, 2}.
引用
收藏
页码:710 / 722
页数:13
相关论文
共 50 条
  • [41] Recurrence risk groups after nephrectomy for renal cell carcinoma
    Polanco Pujol, L.
    Herranz Amo, F.
    Cano Velasco, J.
    Subira Rios, D.
    Moralejo Garate, M.
    Hernandez Cavieres, J.
    Barbas Bernardos, G.
    Bueno Chomon, G.
    Rodriguez Fernandez, E.
    Hernandez Fernandez, C.
    ACTAS UROLOGICAS ESPANOLAS, 2020, 44 (02): : 111 - 118
  • [42] Growth of periodic Grigorchuk groups
    Erschler, Anna
    Zheng, Tianyi
    INVENTIONES MATHEMATICAE, 2020, 219 (03) : 1069 - 1155
  • [43] GROWTH IN GROUPS: IDEAS AND PERSPECTIVES
    Helfgott, Harald A.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 357 - 413
  • [44] A Finitary Version of Gromov’s Polynomial Growth Theorem
    Yehuda Shalom
    Terence Tao
    Geometric and Functional Analysis, 2010, 20 : 1502 - 1547
  • [45] Nilprogressions and groups with moderate growth
    Breuillard, Emmanuel
    Tointon, Matthew C. H.
    ADVANCES IN MATHEMATICS, 2016, 289 : 1008 - 1055
  • [46] A FINITARY VERSION OF GROMOV'S POLYNOMIAL GROWTH THEOREM
    Shalom, Yehuda
    Tao, Terence
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (06) : 1502 - 1547
  • [47] A Critical Analysis of Bulbar Urethroplasty Stricture Recurrence: Characteristics and Management
    Kahokehr, Arman A.
    Granieri, Michael A.
    Webster, George D.
    Peterson, Andrew C.
    JOURNAL OF UROLOGY, 2018, 200 (06) : 1302 - 1307
  • [48] On recurrence and transience of multivariate near-critical stochastic processes
    Kersting, Gotz
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [49] Transience, Recurrence and Critical Behavior¶for Long-Range Percolation
    Noam Berger
    Communications in Mathematical Physics, 2002, 226 : 531 - 558
  • [50] Recurrence and transience of the critical random walk snake in random conductances
    Legrand, Alexandre
    Sabot, Christophe
    Schapira, Bruno
    ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30