Critical constants for recurrence on groups of polynomial growth

被引:1
|
作者
Revelle, David [1 ]
Thompson, Russ [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2010年 / 15卷
基金
美国国家科学基金会;
关键词
nilpotent group; Schreier graph; random walk; recurrence; volume growth; NILPOTENT GROUPS; RANDOM-WALKS;
D O I
10.1214/EJP.v15-773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The critical constant for recurrence, c(rt), is an invariant of the quotient space H\G of a finitely generated group. The constant is determined by the largest moment a probability measure on G can have without the induced random walk on H\G being recurrent. We present a description of which subgroups of groups of polynomial volume growth are recurrent. Using this we show that for such recurrent subgroups c(rt) corresponds to the relative growth rate of H in G, and in particular c(rt) is an element of {0, 1, 2}.
引用
收藏
页码:710 / 722
页数:13
相关论文
共 50 条