Stochastic Tverberg Theorems With Applications in Multiclass Logistic Regression, Separability, and Centerpoints of Data

被引:3
作者
De Loera, Jesus A. [1 ]
Hogan, Thomas [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2020年 / 2卷 / 04期
关键词
logistic regression; generalized linear models; maximum likelihood estimation; high-dimensional logistic regression; Tverberg's theorem; separability of data; geometric probability; combinatorial convexity; computational geometry in statistics; depth of data point; centerpoints; Tukey median; EXISTENCE; CARATHEODORY; POINTS; DEPTH; TIME;
D O I
10.1137/19M1277102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new stochastic geometry theorems that give bounds on the probability that m random data classes all contain a point in common in their convex hulls. These theorems relate to the existence of maximum likelihood estimators in multinomial logistic regression, to the separability of data, and to the computation of centerpoints of data clouds.
引用
收藏
页码:1151 / 1166
页数:16
相关论文
共 23 条
[1]  
ALBERT A, 1984, BIOMETRIKA, V71, P1
[2]   Living on the edge: phase transitions in convex programs with random data [J].
Amelunxen, Dennis ;
Lotz, Martin ;
McCoy, Michael B. ;
Tropp, Joel A. .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (03) :224-294
[3]   The stochastic geometry of unconstrained one-bit data compression [J].
Baccelli, Francois ;
O'Reilly, Eliza .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
[4]   TVERBERG'S THEOREM IS 50 YEARS OLD: A SURVEY [J].
Barany, Imre ;
Soberon, Pablo .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 55 (04) :459-492
[5]   THE PHASE TRANSITION FOR THE EXISTENCE OF THE MAXIMUM LIKELIHOOD ESTIMATE IN HIGH-DIMENSIONAL LOGISTIC REGRESSION [J].
Candes, Emmanuel J. ;
Sur, Pragya .
ANNALS OF STATISTICS, 2020, 48 (01) :27-42
[6]  
Chan Timothy M, 2004, Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, P430
[7]   Approximating center points with iterative radon points [J].
Clarkson, KL ;
Eppstein, D ;
Miller, GL ;
Sturtivant, C ;
Teng, SH .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1996, 6 (03) :357-377
[8]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[9]   THE DISCRETE YET UBIQUITOUS THEOREMS OF CARATHEODORY, HELLY, SPERNER, TUCKER, AND TVERBERG [J].
De Loera, Jesus A. ;
Goaoc, Xavier ;
Meunier, Frederic ;
Mustafa, Nabil H. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (03) :415-511
[10]  
Erds P., 1961, Publ. Math. Inst. Hung. Acad. Sci, V6, P215