Feature extraction and classification of heart sound using 1D convolutional neural networks

被引:84
|
作者
Li, Fen [1 ]
Liu, Ming [1 ]
Zhao, Yuejin [1 ]
Kong, Lingqin [1 ]
Dong, Liquan [1 ]
Liu, Xiaohua [1 ]
Hui, Mei [1 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing Key Lab Precis Optoelect Measurement Inst, Beijing 100081, Peoples R China
关键词
Auscultation; Convolutional neural networks (CNNs); Denoising autoencoder; Heart disease risk; PHONOCARDIOGRAM;
D O I
10.1186/s13634-019-0651-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We proposed a one-dimensional convolutional neural network (CNN) model, which divides heart sound signals into normal and abnormal directly independent of ECG. The deep features of heart sounds were extracted by the denoising autoencoder (DAE) algorithm as the input feature of 1D CNN. The experimental results showed that the model using deep features has stronger anti-interference ability than using mel-frequency cepstral coefficients, and the proposed 1D CNN model has higher classification accuracy precision, higher F-score, and better classification ability than backpropagation neural network (BP) model. In addition, the improved 1D CNN has a classification accuracy rate of 99.01%.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Feature extraction and classification of heart sound using 1D convolutional neural networks
    Fen Li
    Ming Liu
    Yuejin Zhao
    Lingqin Kong
    Liquan Dong
    Xiaohua Liu
    Mei Hui
    EURASIP Journal on Advances in Signal Processing, 2019
  • [2] Heart sound classification algorithm based on bispectral feature extraction and convolutional neural networks
    Peng, Liyong
    Quan, Haiyan
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (05): : 977 - 985
  • [3] Heartbeat Classification Using 1D Convolutional Neural Networks
    Shaker, Abdelrahman M.
    Tantawi, Manal
    Shedeed, Howida A.
    Tolba, Mohamed F.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 502 - 511
  • [4] Classification of Partial Discharge Signals Using 1D Convolutional Neural Networks
    Mantach, Sara
    Janani, Hamed
    Ashraf, Ahmed
    Kordi, Behzad
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [5] End-to-end environmental sound classification using a 1D convolutional neural network
    Abdoli, Sajjad
    Cardinal, Patrick
    Koerich, Alessandro Lameiras
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 136 : 252 - 263
  • [6] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [7] Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction
    Yousef Abd Al-Hattab
    Hasan Firdaus Zaki
    Amir Akramin Shafie
    Neural Computing and Applications, 2021, 33 : 14495 - 14506
  • [8] Rethinking environmental sound classification using convolutional neural networks: optimized parameter tuning of single feature extraction
    Al-Hattab, Yousef Abd
    Zaki, Hasan Firdaus
    Shafie, Amir Akramin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (21): : 14495 - 14506
  • [9] Regularized Deep Convolutional Neural Networks for Feature Extraction and Classification
    Jayech, Khaoula
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 431 - 439
  • [10] Joint Sample Expansion and 1D Convolutional Neural Networks for Tumor Classification
    Liu, Jian
    Cheng, Yuhu
    Wang, Xuesong
    Kong, Yi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 135 - 141