Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy

被引:189
作者
Han, Quanquan [1 ,2 ]
Gu, Yuchen [3 ]
Setchi, Rossitza [2 ]
Lacan, Franck [2 ]
Johnston, Richard [3 ]
Evans, Sam L. [2 ]
Yang, Shoufeng [4 ]
机构
[1] Shandong Univ, CaJET, Ctr Addit Mfg,Sch Mech Engn, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Shandong, Peoples R China
[2] Cardiff Univ, Cardiff Sch Engn, Cardiff CF24 3AA, S Glam, Wales
[3] Swansea Univ, Coll Engn, Swansea SA1 8EN, W Glam, Wales
[4] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300B,Box 2420, B-3001 Leuven, Belgium
基金
英国工程与自然科学研究理事会;
关键词
Powder bed fusion; Nickel-based superalloy; Hastelloy X; Cracking; Nanoparticle; POWDER BED FUSION; AL-AL2O3; NANOCOMPOSITES; HEAT-TREATMENT; MECHANICAL-BEHAVIOR; LASER; MICROSTRUCTURE; ALLOY; TI-6AL-4V; CASTABILITY; SIMULATION;
D O I
10.1016/j.addma.2019.100919
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) is a proven additive manufacturing (AM) technology for producing metallic components with complex shapes using layer-by-layer manufacture principle. However, the fabrication of crackfree high-performance Ni-based superalloys such as Hastelloy X (HX) using LPBF technology remains a challenge because of these materials' susceptibility to hot cracking. This paper addresses the above problem by proposing a novel method of introducing 1 wt.% titanium carbide (TiC) nanoparticles. The findings reveal that the addition of TiC nanoparticles results in the elimination of microcracks in the LPBF-fabricated enhanced HX samples; i.e. the 0.65% microcracks that were formed in the as-fabricated original HX were eliminated in the as-fabricated enhanced HX, despite the 0.14% residual pores formed. It also contributes to a 21.8% increase in low-angle grain boundaries (LAGBs) and a 98 MPa increase in yield strength. The study revealed that segregated carbides were unable to trigger hot cracking without sufficient thermal residual stresses; the significantly increased subgrains and low-angle grain boundaries played a key role in the hot cracking elimination. These findings offer a new perspective on the elimination of hot cracking of nickel-based superalloys and other industrially relevant crack-susceptible alloys. The findings also have significant implications for the design of new alloys, particularly for high-temperature industrial applications.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Prediction of microstructure in laser powder bed fusion process [J].
Acharya, Ranadip ;
Sharon, John A. ;
Staroselsky, Alexander .
ACTA MATERIALIA, 2017, 124 :360-371
[2]   Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J].
Antonysamy, A. A. ;
Meyer, J. ;
Prangnell, P. B. .
MATERIALS CHARACTERIZATION, 2013, 84 :153-168
[3]   Additive manufacturing of Ni-based superalloys: The outstanding issues [J].
Attallah, Moataz M. ;
Jennings, Rachel ;
Wang, Xiqian ;
Carter, Luke N. .
MRS BULLETIN, 2016, 41 (10) :758-764
[4]   EFFECT OF CARBIDE AND NITRIDE ADDITIONS ON HETEROGENEOUS NUCLEATION BEHAVIOR OF LIQUID IRON [J].
BRAMFITT, BL .
METALLURGICAL TRANSACTIONS, 1970, 1 (07) :1987-&
[5]  
Brodin H., 2013, P ASME TURB EXP 2013, DOI [10.1115/gt2013-95878, DOI 10.1115/GT2013-95878]
[6]   Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J].
Chauvet, Edouard ;
Kontis, Paraskevas ;
Jaegle, Eric A. ;
Gault, Baptiste ;
Raabe, Dierk ;
Tassin, Catherine ;
Blandin, Jean-Jacques ;
Dendievel, Remy ;
Vayre, Benjamin ;
Abed, Stephane ;
Martin, Guilhem .
ACTA MATERIALIA, 2018, 142 :82-94
[7]   Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J].
Chlebus, E. ;
Gruber, K. ;
Kuznicka, B. ;
Kurzac, J. ;
Kurzynowski, T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 639 :647-655
[8]   Microstructural Control of Additively Manufactured Metallic Materials [J].
Collins, P. C. ;
Brice, D. A. ;
Samimi, P. ;
Ghamarian, I. ;
Fraser, H. L. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 46, 2016, 46 :63-91
[9]   Electron beam melted Ti-6Al-4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material [J].
de Formanoir, Charlotte ;
Michotte, Sebastien ;
Rigo, Olivier ;
Germain, Lionel ;
Godet, Stephane .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 652 :105-119
[10]  
Durand-Charre M., 1997, The Microstructure of Superalloys