Sharp Forelli-Rudin estimates and the norm of the Bergman projection

被引:34
作者
Liu, Congwen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, USTC, Wu Wen Tsun Key Lab Math, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
Sharp Forelli-Rudin estimates; Bergman projection; Norm estimates;
D O I
10.1016/j.jfa.2014.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is twofold. We first establish a sharp version of Forelli-Rudin estimates for certain integrals on the ball. Then, as main application of these estimates, we obtain a sharp L-p-norm estimate for the Bergman projection, which refines a result of K. Zhu as well as gives a negative answer to a question raised by M. Dostanic. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:255 / 277
页数:23
相关论文
共 19 条
[1]  
Abramowitz M., 1965, APPL MATH SERIES, V55
[2]  
[Anonymous], INTEGRAL TRANSFORMS
[3]   OPTIMAL NORM ESTIMATE OF OPERATORS RELATED TO THE HARMONIC BERGMAN PROJECTION ON THE BALL [J].
Choe, Boo Rim ;
Koo, Hyungwoon ;
Nam, Kyesook .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) :357-374
[4]   Two sided norm estimate of the Bergman projection on Lp spaces [J].
Dostanic, Milutin R. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) :569-575
[5]  
Duren P.L., 2004, MATH SURVEYS MONOGRA, V100
[6]  
Erdelyi A, 1973, HIGHER TRANSCENDENTA, VI
[7]   PROJECTIONS ON SPACES OF HOLOMORPHIC FUNCTIONS IN BALLS [J].
FORELLI, F ;
RUDIN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (06) :593-602
[8]  
Gonessa J, 2011, N Y J MATH, V17A, P101
[9]   Best constants for the Riesz projection [J].
Hollenbeck, B ;
Verbitsky, IE .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) :370-392
[10]  
Isralowitz J., ARXIV13060316