Maximization and minimization of interfacial thermal conductance by modulating the mass distribution of the interlayer

被引:41
作者
Yang, Lina [1 ]
Wan, Xiao [2 ,3 ]
Ma, Dengke [4 ,5 ]
Jiang, Yi [1 ]
Yang, Nuo [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[4] Nanjing Normal Univ, NNU SULI Thermal Energy Res Ctr NSTER, Nanjing 210023, Peoples R China
[5] Nanjing Normal Univ, Ctr Quantum Transport & Thermal Energy Sci CQTES, Sch Phys & Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; RESISTANCE;
D O I
10.1103/PhysRevB.103.155305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tuning interfacial thermal conductance has been a key task for the thermal management of nanoelectronic devices. Here, we study how the interfacial thermal conductance is greatly influenced by modulating the mass distribution of the interlayer of one-dimensional atomic chain. By nonequilibrium Green's function and machine learning algorithm, the maximum/minimum value of thermal conductance and its corresponding mass distribution are calculated. Interestingly, the mass distribution corresponding to the maximum thermal conductance is not a simple function, such as the linear and exponential distribution predicted in previous works, it is similar to a sinusoidal curve around a linear distribution for larger thickness interlayer. Further, the mechanism of the abnormal results is explained by analyzing the phonon transmission spectra and density of states. Additionally, the mass distributions are applied to Si/Ge and Si/Si-isotope three-dimensional systems. The work provides deep insight into optimizing and designing interfacial thermal conductance by modulating mass distribution of interlayer atoms.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces [J].
Chen, Jie ;
Walther, Jens H. ;
Koumoutsakos, Petros .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (48) :7539-7545
[2]   Machine learning maximized Anderson localization of phonons in aperiodic superlattices [J].
Chowdhury, Prabudhya Roy ;
Reynolds, Colleen ;
Garrett, Adam ;
Feng, Tianli ;
Adiga, Shashishekar P. ;
Ruan, Xiulin .
NANO ENERGY, 2020, 69
[3]   Rigorous formalism of anharmonic atomistic Green's function for three-dimensional interfaces [J].
Dai, Jinghang ;
Tian, Zhiting .
PHYSICAL REVIEW B, 2020, 101 (04)
[4]   MDTS: automatic complex materials design using Monte Carlo tree search [J].
Dieb, Thaer M. ;
Ju, Shenghong ;
Yoshizoe, Kazuki ;
Hou, Zhufeng ;
Shiomi, Junichiro ;
Tsuda, Koji .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) :498-503
[5]   Influence of interfacial properties on thermal transport at gold:silicon contacts [J].
Duda, J. C. ;
Yang, C. -Y. P. ;
Foley, B. M. ;
Cheaito, R. ;
Medlin, D. L. ;
Jones, R. E. ;
Hopkins, P. E. .
APPLIED PHYSICS LETTERS, 2013, 102 (08)
[6]   Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces [J].
English, Timothy S. ;
Duda, John C. ;
Smoyer, Justin L. ;
Jordan, Donald A. ;
Norris, Pamela M. ;
Zhigilei, Leonid V. .
PHYSICAL REVIEW B, 2012, 85 (03)
[7]   Semiconductor glass with superior flexibility and high room temperature thermoelectric performance [J].
He, Shiyang ;
Li, Yongbo ;
Liu, Lu ;
Jiang, Ying ;
Feng, Jingjing ;
Zhu, Wei ;
Zhang, Jiye ;
Dong, Zirui ;
Deng, Yuan ;
Luo, Jun ;
Zhang, Wenqing ;
Chen, Gang .
SCIENCE ADVANCES, 2020, 6 (15)
[8]   Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers [J].
Jeong, Minyoung ;
Freedman, Justin P. ;
Liang, Hongliang Joe ;
Chow, Cheng-Ming ;
Sokalski, Vincent M. ;
Bain, James A. ;
Malen, Jonathan A. .
PHYSICAL REVIEW APPLIED, 2016, 5 (01)
[9]   Efficient global optimization of expensive black-box functions [J].
Jones, DR ;
Schonlau, M ;
Welch, WJ .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) :455-492
[10]   Designing Nanostructures for Phonon Transport via Bayesian Optimization [J].
Ju, Shenghong ;
Shiga, Takuma ;
Feng, Lei ;
Hou, Zhufeng ;
Tsuda, Koji ;
Shiomi, Junichiro .
PHYSICAL REVIEW X, 2017, 7 (02)