OntoSenticNet: A Commonsense Ontology for Sentiment Analysis

被引:101
作者
Dragoni, Mauro [1 ]
Poria, Soujanya [2 ]
Cambria, Erik [3 ]
机构
[1] Fdn Bruno Kessler, Povo, Italy
[2] Nanyang Technol Univ, Temasek Labs, Singapore, Singapore
[3] Nanyang Technol Univ, Singapore, Singapore
关键词
CHALLENGES;
D O I
10.1109/MIS.2018.033001419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we present OntoSenticNet, a commonsense ontology for sentiment analysis based on SenticNet, a semantic network of 100,000 concepts based on conceptual primitives. The key characteristics of OntoSenticNet are: (i) the definition of precise conceptual hierarchy and properties associating concepts and sentiment values; (ii) the support for connecting external information (e.g., word embedding, domain information, and different polarity representations) to each individual defined within the ontology; and (iii) the capability of associating each concept with annotations contained in external resources (e.g., documents and multimodal resources).
引用
收藏
页码:77 / 85
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 2016, arXiv preprint arXiv:1610.08815
[2]  
[Anonymous], PROPAGATING AGGREGAT
[3]  
[Anonymous], 2015, SENTIC COMPUTING COM
[4]  
[Anonymous], 2016, COLING 2016 26 INT C
[5]  
Cambria E., 2017, PRACTICAL GUIDE SENT
[6]  
Cambria E, 2018, AAAI CONF ARTIF INTE, P1795
[7]   Sentiment Analysis Is a Big Suitcase [J].
Cambria, Erik ;
Poria, Soujanya ;
Gelbukh, Alexander ;
Thelwall, Mike .
IEEE INTELLIGENT SYSTEMS, 2017, 32 (06) :74-80
[8]   Learning Community Embedding with Community Detection and Node Embedding on Graphs [J].
Cavallari, Sandro ;
Zheng, Vincent W. ;
Cai, Hongyun ;
Chang, Kevin Chen-Chuan ;
Cambria, Erik .
CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, :377-386
[9]   Distinguishing between facts and opinions for sentiment analysis: Survey and challenges [J].
Chaturvedi, Iti ;
Cambria, Erik ;
Welsch, Roy E. ;
Herrera, Francisco .
INFORMATION FUSION, 2018, 44 :65-77
[10]   A Three-Phase Approach for Exploiting Opinion Mining in Computational Advertising [J].
Dragoni, Mauro .
IEEE INTELLIGENT SYSTEMS, 2017, 32 (03) :21-27