Geometric characterizations for variational minimizing solutions of charged 3-body problems

被引:0
作者
Kuang, Wentian [1 ]
Long, Yiming [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Pure Math & Combinator, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Charged 3-body problem; variational minimizer; geometric characterization; PERIODIC-SOLUTIONS;
D O I
10.1007/s11464-016-0514-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the charged 3-body problem with the potential function being (-alpha)-homogeneous on the mutual distances of any two particles via the variational method and try to find the geometric characterizations of the minimizers. We prove that if the charged 3-body problem admits a triangular central configuration, then the variational minimizing solutions of the problem in the -antiperiodic function space are exactly defined by the circular motions of this triangular central configuration.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 11 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[2]   MINIMIZING PROPERTY OF KEPLERIAN ORBITS [J].
GORDON, WB .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :961-971
[3]  
Hardy G., 1952, INEQUALITIES
[4]  
Long Y., 2012, LECT CELESTIAL MECH
[5]  
Long YM, 2000, ACTA MATH SIN, V16, P579, DOI 10.1007/PL00011566
[6]  
Meyer K, 1992, INTRO HAMILTONIAN SY
[7]   ON CENTRAL CONFIGURATIONS [J].
MOECKEL, R .
MATHEMATISCHE ZEITSCHRIFT, 1990, 205 (04) :499-517
[8]  
Perez-Chavela E., 1996, CONT MATH, V198, P137
[9]  
RABINOWITZ PH, 1978, COMMUN PUR APPL MATH, V31, P31
[10]   PERIODIC-SOLUTIONS FOR N-BODY TYPE PROBLEMS [J].
ZELATI, VC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :477-492