MODERATE DEVIATION PRINCIPLE FOR A CLASS OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

被引:5
|
作者
Fatheddin, Parisa [1 ,3 ]
Xiong, Jie [2 ]
机构
[1] Univ Tennessee, Knoxville, TN USA
[2] Univ Macau, FST, Dept Math, POB 3001, Macau, Peoples R China
[3] Air Force Inst Technol, Dept Math & Stat, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA
关键词
Moderate deviation principle; Fleming-Viot process; stochastic partial differential equation; super-Brownian motion; SUPER-BROWNIAN MOTION; IMMIGRATION; THEOREM; SPDES;
D O I
10.1017/jpr.2015.24
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the moderate deviation principle for the solutions of a class of stochastic partial differential equations with non-Lipschitz continuous coefficients. As an application, we derive the moderate deviation principle for two important population models: super-Brownian motion and the Fleming-Viot process.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 50 条