Characteristics and structure of a soy protein isolate-lutein nanocomplex produced via high-pressure homogenization

被引:15
|
作者
Yang, Haodong [1 ]
Li, Lijia [1 ]
Xie, Changyuan [1 ]
He, Mingyu [1 ]
Guo, Zengwang [1 ]
Zhao, Shijie [1 ]
Teng, Fei [1 ]
Li, Yang [1 ,2 ]
机构
[1] Northeast Agr Univ, Dept Food Sci, Harbin 150030, Heilongjiang, Peoples R China
[2] Heilongjiang Acad Green Food Sci, Harbin, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
soy protein isolate; lutein; high-pressure homogenization; nanocomplexes; BOVINE SERUM-ALBUMIN; ULTRA-HIGH PRESSURE; FUNCTIONAL-PROPERTIES; STABILITY; EMULSIONS; BINDING; HYDROPHOBICITY; NANOEMULSIONS; ANTHOCYANINS; COMPLEXATION;
D O I
10.1002/jsfa.11894
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
BACKGROUND In recent years, nanocarriers for transporting active substances have attracted attention. This study was to explore the soy protein isolate (SPI) after high-pressure homogenization (HPH) (0, 30, 60, 90 and 120 MPa) as potential lutein carriers. RESULTS The load amount (LA) and encapsulation efficiency (EE) of the SPI-lutein nanocomplexes at a homogenization pressure of 60 MPa were the highest (2.32 mg mL(-1) and 92.85%, respectively), and the average particle size and zeta-potential of the SPI-lutein nanocomplexes were 192.1 nm and -30.06 mV, respectively. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl-antioxidant activities of the complex increased from 12.4% and 23.3% to 52.7% and 61.07%, respectively, after the protein was treated with HPH. The surface hydrophobicity of the SPI and the SPI-lutein nanocomplexes increased with increasing homogenization pressure treatment. Fourier transform-infrared spectrophotometry analyses suggested that the homogenization treatments resulted in partial unfolding of the protein molecules, and the addition of lutein can also lead to the change of protein secondary structure. The fluorescence emission of SPI was quenched by lutein through the static quenching mechanism. Fluorescence experiments revealed that SPI and lutein had the strongest binding ability through hydrophobic interaction at a homogenization pressure of 60 MPa. CONCLUSION After HPH, the combination of SPI and lutein was beneficial, and the stability of lutein also improved after the combination. This study is conducive to expanding the application of soybean protein in the food industry. (c) 2022 Society of Chemical Industry.
引用
收藏
页码:5411 / 5421
页数:11
相关论文
共 50 条
  • [31] Effect of High Pressure Treatment on Interfacial Properties, Structure and Oxidative Stability of Soy Protein Isolate-Stabilized Emulsions
    Chen, Shuang
    Wang, Xiaodan
    Xu, Yeye
    Zhang, Xiaonan
    Wang, Xibo
    Jiang, Lianzhou
    JOURNAL OF OLEO SCIENCE, 2019, 68 (05) : 409 - 418
  • [32] Buriti Oil Emulsions as Affected by Soy Protein Isolate/High-Methoxyl Pectin Ratio, Oil Content and Homogenization Pressure
    Faria Freitas, Mirian Luisa
    Badan Ribeiro, Ana Paula
    Nicoletti, Vania Regina
    FOOD TECHNOLOGY AND BIOTECHNOLOGY, 2020, 58 (02) : 159 - 172
  • [33] Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel
    Bi, Chong-hao
    Wang, Peng-lin
    Sun, Dong-yu
    Yan, Zi-ming
    Liu, Yi
    Huang, Zhi-gang
    Gao, Fei
    JOURNAL OF FOOD ENGINEERING, 2020, 277 (277)
  • [34] Effects of high-pressure homogenization on physicochemical, rheological and emulsifying properties of myofibrillar protein
    Wu, Fan
    Shi, Xiaojie
    Zou, Henan
    Zhang, Tingyu
    Dong, Xinran
    Zhu, Rui
    Yu, Cuiping
    JOURNAL OF FOOD ENGINEERING, 2019, 263 : 272 - 279
  • [35] Effects of high hydrostatic pressure on the functional properties of soy protein isolate
    Zengin, Kubra
    Ozel, Baris
    Oztop, Mecit Halil
    Alpas, Hami
    JOURNAL OF FOOD PROCESS ENGINEERING, 2024, 47 (03)
  • [36] pH-induced interface protein structure changes to adjust the stability of tilapia protein isolate emulsion prepared by high-pressure homogenization
    Liu, Qingguan
    Chen, Ailin
    Hong, Pengzhi
    Zhou, Chunxia
    Li, Xiang
    Xie, Mengya
    FOOD CHEMISTRY-X, 2024, 24
  • [37] Consequences of dynamic high-pressure homogenization pretreatment on the physicochemical and functional characteristics of citric acid-treated whey protein isolate
    Shi, Ruijie
    Li, Tong
    Li, Meng
    Munkh-Amgalan, Gantumur
    Qayum, Abdul
    Bilawal, Akhunzada
    Jiang, Zhanmei
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2021, 136
  • [38] Effects of High-Pressure Homogenization at Different Pressures on Structure and Functional Properties of Oyster Protein Isolates
    Yu, Cuiping
    Wu, Fan
    Cha, Yue
    Qin, Yuting
    Du, Ming
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2018, 14 (04)
  • [39] Effect of high-pressure homogenization pretreatment on gelation behavior and physicochemical, rheological and structural properties of sesame protein isolate with glucono-6-lactone
    Maribao, Iannie P.
    Gul, Osman
    FOOD HYDROCOLLOIDS, 2024, 155
  • [40] Flaxseed oil - Whey protein isolate emulsions: Effect of high pressure homogenization
    Kuhn, K. R.
    Cunha, R. L.
    JOURNAL OF FOOD ENGINEERING, 2012, 111 (02) : 449 - 457