A differential evolution algorithm for estimating mobile channel parameters α - η - μ

被引:2
|
作者
Lemos, Carlos Paula [1 ]
Paschoarelli Veiga, Antonio Claudio [2 ]
Fasolo, Sandro Adriano [3 ]
机构
[1] Fed Inst Triangulo Mineiro, Av B 155, BR-38700000 Patos De Minas, MG, Brazil
[2] Univ Fed Uberlandia, Av Joao Naves Avila 2121, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Sao Joao del Rei, Rod MG 443,KM 7, BR-36420000 Ouro Branco, MG, Brazil
关键词
alpha - eta - mu fading channel; Differential evolution; Maximum likelihood estimation; Numerical optimization; Parameter estimation; Random generators; GLOBAL OPTIMIZATION; KAPPA-MU; MODEL;
D O I
10.1016/j.eswa.2020.114357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The statistical modeling of mobile radio signals requires the estimation of parameters that describe the probability distribution that hypothetically models this channel, so that this probabilistic model guarantees a good adjustment to the experimental data. This article proposes the use of differential evolution (DE) algorithms for estimating parameters of the alpha - eta - mu. fading channel, and to compare these to the traditional method of moments (MM) and maximum likelihood estimation (MLE) method. These traditional parameter estimation methods use nonlinear numerical methods, and the solution, if found, may be the optimal value, an approximation of the optimal value, or a local maximum. The authors demonstrate through comparative experiments using the MM and the MLE method that the DE algorithm for the proposed estimation demands a lower run time. In addition, it presents the error performance measured by the mean square error (MSE), near or above, as well as high robustness measured by the statistical analysis. Essentially, this algorithm always finds acceptable physical estimations with a good goodness of fit to experimental data. This estimating DE algorithm along with its proposed fitness function are original contributions of this paper. The received signal samples, used in the experiments of this paper, were randomly generated by the alpha - eta - mu. fading simulator, which is another contribution of this paper. This proposed alpha - eta - mu. fading simulator is based on the Clarke and Gans fading model and expands the generation range of current simulators, from mu integer multiples of 0.5, to mu integer multiples of 0.25.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] The grouping differential evolution algorithm for multi-dimensional optimization problems
    Piotrowski, Adam P.
    Napiorkowski, Jaroslaw J.
    CONTROL AND CYBERNETICS, 2010, 39 (02): : 527 - 550
  • [42] Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models
    Wang, Da
    Sun, Xingping
    Kang, Hongwei
    Shen, Yong
    Chen, Qingyi
    ENERGY REPORTS, 2022, 8 : 4724 - 4746
  • [43] An improved differential evolution algorithm with triangular mutation for global numerical optimization
    Mohamed, Ali Wagdy
    COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 85 : 359 - 375
  • [44] Using Taguchi method to optimize differential evolution algorithm parameters to minimize workload smoothness index in SALBP
    Mozdgir, A.
    Mandavi, Iraj
    Seyyedi, I.
    Shiraqei, M. E.
    PROCEEDINGS OF THE FOURTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION, 2011, 1337 : 258 - 264
  • [45] A Differential Evolution Algorithm for Restrictive Channel Routing Problem in VLSI Circuit Design
    Vijayakumar, S.
    Sudhakar, J. Goldwyn
    Muthukumar, G. G.
    Victoire, T. Aruldoss Albert
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1257 - 1262
  • [46] A differential free point generation scheme in the differential evolution algorithm
    Ali, M. M.
    Fatti, L. P.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (04) : 551 - 572
  • [47] A Differential Free Point Generation Scheme in the Differential Evolution Algorithm
    M. M. Ali
    L. P. Fatti
    Journal of Global Optimization, 2006, 35 : 551 - 572
  • [48] A constraint handling method for the Differential Evolution algorithm
    Lampinen, J
    INTELLIGENT TECHNOLOGIES - THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT TECHNOLOGIES, 2002, 76 : 152 - 158
  • [49] An alternative differential evolution algorithm for global optimization
    Mohamed, Ali W.
    Sabry, Hegazy Z.
    Khorshid, Motaz
    JOURNAL OF ADVANCED RESEARCH, 2012, 3 (02) : 149 - 165
  • [50] A differential evolution algorithm for yield curve estimation
    Maciel, Leandro
    Gomide, Fernando
    Ballini, Rosangela
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 129 : 10 - 30