A differential evolution algorithm for estimating mobile channel parameters α - η - μ

被引:2
|
作者
Lemos, Carlos Paula [1 ]
Paschoarelli Veiga, Antonio Claudio [2 ]
Fasolo, Sandro Adriano [3 ]
机构
[1] Fed Inst Triangulo Mineiro, Av B 155, BR-38700000 Patos De Minas, MG, Brazil
[2] Univ Fed Uberlandia, Av Joao Naves Avila 2121, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Sao Joao del Rei, Rod MG 443,KM 7, BR-36420000 Ouro Branco, MG, Brazil
关键词
alpha - eta - mu fading channel; Differential evolution; Maximum likelihood estimation; Numerical optimization; Parameter estimation; Random generators; GLOBAL OPTIMIZATION; KAPPA-MU; MODEL;
D O I
10.1016/j.eswa.2020.114357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The statistical modeling of mobile radio signals requires the estimation of parameters that describe the probability distribution that hypothetically models this channel, so that this probabilistic model guarantees a good adjustment to the experimental data. This article proposes the use of differential evolution (DE) algorithms for estimating parameters of the alpha - eta - mu. fading channel, and to compare these to the traditional method of moments (MM) and maximum likelihood estimation (MLE) method. These traditional parameter estimation methods use nonlinear numerical methods, and the solution, if found, may be the optimal value, an approximation of the optimal value, or a local maximum. The authors demonstrate through comparative experiments using the MM and the MLE method that the DE algorithm for the proposed estimation demands a lower run time. In addition, it presents the error performance measured by the mean square error (MSE), near or above, as well as high robustness measured by the statistical analysis. Essentially, this algorithm always finds acceptable physical estimations with a good goodness of fit to experimental data. This estimating DE algorithm along with its proposed fitness function are original contributions of this paper. The received signal samples, used in the experiments of this paper, were randomly generated by the alpha - eta - mu. fading simulator, which is another contribution of this paper. This proposed alpha - eta - mu. fading simulator is based on the Clarke and Gans fading model and expands the generation range of current simulators, from mu integer multiples of 0.5, to mu integer multiples of 0.25.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A novel differential evolution algorithm approach for estimating the parameters of Gamma distribution: An application to the failure stresses of single carbon fibres
    Yonar, Aynur
    Pehlivan, Nimet Yapici
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1493 - 1514
  • [2] Estimating water retention characteristic parameters using differential evolution
    Maggi, Sabino
    COMPUTERS AND GEOTECHNICS, 2017, 86 : 163 - 172
  • [3] Differential evolution algorithm with ensemble of parameters and mutation strategies
    Mallipeddi, R.
    Suganthan, P. N.
    Pan, Q. K.
    Tasgetiren, M. F.
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1679 - 1696
  • [4] An improved differential evolution algorithm with fitness-based adaptation of the control parameters
    Ghosh, Arnob
    Das, Swagatam
    Chowdhury, Aritra
    Gini, Ritwik
    INFORMATION SCIENCES, 2011, 181 (18) : 3749 - 3765
  • [5] Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover Strategies
    Mallipeddi, Rammohan
    Suganthan, Ponnuthurai Nagaratnam
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 71 - +
  • [6] Control parameters and mutation based variants of differential evolution algorithm
    Pooja
    Chaturvedi, Praveena
    Kumar, Pravesh
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2015, 15 (04) : 783 - 800
  • [7] Differential evolution algorithm with adaptive control parameters
    Liu, JH
    Lampinen, J
    ADVANCES IN SOFT COMPUTING: ENGINEERING DESIGN AND MANUFACTURING, 2003, : 277 - 286
  • [8] Parameters' fine tuning of differential evolution algorithm
    Al-Dabbagh, Rawaa Dawoud
    Mekhilef, Saad
    Baba, Mohd Sapiyan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2015, 30 (02): : 125 - 139
  • [9] A New Differential Evolution Algorithm with Random Parameters
    Huang, Shao-Rong
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 3614 - 3621
  • [10] Hybrid Symbiotic Differential Evolution Moth-Flame Optimization Algorithm for Estimating Parameters of Photovoltaic Models
    Wu, Yufan
    Chen, Rongling
    Li, Chunquan
    Zhang, Leyingyue
    Cui, Zhiling
    IEEE ACCESS, 2020, 8 : 156328 - 156346