Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction

被引:29
|
作者
Lin, Xiaoyun [1 ]
Li, Lulu [1 ]
Chang, Xin [1 ]
Pei, Chunlei [1 ,2 ]
Zhao, Zhi-Jian [1 ,2 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Minist Educ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300350, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
nitrogen reduction reaction; electrocatalysts; single-atom catalysts; density functional theory (DFT); black phosphorus;
D O I
10.1007/s40843-020-1522-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing highly selective and efficient single-atom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance trends of transition metal complexes with P-based ligands in nitrogen reduction reaction (NRR) and further develops a design principle for high-performance single-atom catalysts (SACs) of NRR. Among the explored catalysts, W@BP (0.40 eV), Ta@BP (0.47 eV), and Nb@BP (0.53 eV) are identified as remarkable candidates with low free energy change in the potential-limiting step, high stability and high electrical conductivity for NRR. It is worth noting that almost all SACs with P-based ligands exhibit high NRR selectivity, due to the fact that they adsorb *N-2 more strongly than *H. The adsorption free energy of *N2H can be considered as a descriptor for the intrinsic activity trends in NRR. Furthermore, by constructing a volcano plot of the activity against the electronic charge on metal centers, it is demonstrated that the metal center with a moderate amount of positive charge can promote the catalytic performance of NRR.
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 50 条
  • [31] Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction
    Feng, Xueting
    Shang, Ziang
    Qin, Rong
    Han, Yunhu
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (04)
  • [32] Electrocatalytic CO2 Reduction over Single-atom Catalysts
    Jin, Xiangyuan
    Zhang, Libing
    Sun, Xiaofu
    Han, Buxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [33] Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia
    Fuzhou Wang
    Jiaqi Xiang
    Guike Zhang
    Kai Chen
    Ke Chu
    Nano Research, 2024, 17 : 3660 - 3666
  • [34] Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia
    Wang, Fuzhou
    Xiang, Jiaqi
    Zhang, Guike
    Chen, Kai
    Chu, Ke
    NANO RESEARCH, 2024, 17 (05) : 3660 - 3666
  • [35] Single-Atom Catalysts for Electrocatalytic Applications
    Zhang, Qiaoqiao
    Guan, Jingqi
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)
  • [36] Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst
    Zheng, Tingting
    Jiang, Kun
    Ta, Na
    Hu, Yongfeng
    Zeng, Jie
    Liu, Jingyue
    Wang, Haotian
    JOULE, 2019, 3 (01) : 265 - 278
  • [37] Well-Defined Single-Atom Cobalt Catalyst for Electrocatalytic Flue Gas CO2 Reduction
    Hou, Pengfei
    Song, Wenli
    Wang, Xiuping
    Hu, Zhenpeng
    Kang, Peng
    SMALL, 2020, 16 (24)
  • [38] Efficient electrocatalytic nitrate reduction on molecular catalyst with electron-deficient single-atom Cuδ plus sites
    Shi, Li
    Li, Yiming
    He, Shuxian
    Liu, Yinan
    Tang, Xiangyi
    Ao, Liang
    Lv, Xiaoshu
    Fu, Wenyang
    Jiang, Guangming
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [39] A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction
    Xiao, Meiling
    Zhu, Jianbing
    Li, Gaoran
    Li, Na
    Li, Shuang
    Cano, Zachary Paul
    Ma, Lu
    Cui, Peixin
    Xu, Pan
    Jiang, Gaopeng
    Jin, Huile
    Wang, Shun
    Wu, Tianpin
    Lu, Jun
    Yu, Aiping
    Su, Dong
    Chen, Zhongwei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (28) : 9640 - 9645
  • [40] A single-atom alloy catalyst
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2021, 85 (12) : 40 - 41