Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction

被引:29
|
作者
Lin, Xiaoyun [1 ]
Li, Lulu [1 ]
Chang, Xin [1 ]
Pei, Chunlei [1 ,2 ]
Zhao, Zhi-Jian [1 ,2 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Minist Educ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300350, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
nitrogen reduction reaction; electrocatalysts; single-atom catalysts; density functional theory (DFT); black phosphorus;
D O I
10.1007/s40843-020-1522-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing highly selective and efficient single-atom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance trends of transition metal complexes with P-based ligands in nitrogen reduction reaction (NRR) and further develops a design principle for high-performance single-atom catalysts (SACs) of NRR. Among the explored catalysts, W@BP (0.40 eV), Ta@BP (0.47 eV), and Nb@BP (0.53 eV) are identified as remarkable candidates with low free energy change in the potential-limiting step, high stability and high electrical conductivity for NRR. It is worth noting that almost all SACs with P-based ligands exhibit high NRR selectivity, due to the fact that they adsorb *N-2 more strongly than *H. The adsorption free energy of *N2H can be considered as a descriptor for the intrinsic activity trends in NRR. Furthermore, by constructing a volcano plot of the activity against the electronic charge on metal centers, it is demonstrated that the metal center with a moderate amount of positive charge can promote the catalytic performance of NRR.
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 50 条
  • [21] Superior single-atom and single-cluster catalysts towards electrocatalytic nitrogen reduction reactions: a theoretical perspective
    Meng, Haihong
    Zhao, Yinghe
    Li, Fengyu
    Chen, Zhongfang
    JOURNAL OF MATERIALS INFORMATICS, 2025, 5 (01):
  • [22] The Role of Transition Metal Versus Coordination Mode in Single-Atom Catalyst for Electrocatalytic Sulfur Reduction Reaction
    Zhang, Wentao
    Zhang, Gaoshang
    Ma, Jiabin
    Xie, Zhaotian
    Gao, Ziyao
    Yu, Kuang
    Peng, Lele
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 66981 - 66990
  • [23] Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst
    Liu, Song
    Yang, Hong Bin
    Hung, Sung-Fu
    Ding, Jie
    Cai, Weizheng
    Liu, Linghui
    Gao, Jiajian
    Li, Xuning
    Ren, Xinyi
    Kuang, Zhichong
    Huang, Yanqiang
    Zhang, Tao
    Liu, Bin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (02) : 798 - 803
  • [24] Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions
    Li, Junjie
    Banis, Mohammad Norouzi
    Ren, Zhouhong
    Adair, Keegan R.
    Doyle-Davis, Kieran
    Meira, Debora Motta
    Finfrock, Y. Zou
    Zhang, Lei
    Kong, Fanpeng
    Sham, Tsun-Kong
    Li, Ruying
    Luo, Jun
    Sun, Xueliang
    SMALL, 2021, 17 (11)
  • [25] When nitrogen reduction meets single-atom catalysts
    Pang, Yingping
    Su, Chao
    Xu, Liqiang
    Shao, Zongping
    PROGRESS IN MATERIALS SCIENCE, 2023, 132
  • [26] Ruthenium single-atom catalysis for electrocatalytic nitrogen reduction unveiled by grand canonical density functional theory
    Ji, Yujin
    Li, Yifan
    Dong, Huilong
    Ding, Lifeng
    Li, Youyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) : 20402 - 20407
  • [27] Effect of single-atom palladium on the anti-toxicity of electrocatalytic reduction removal of nitrate-nitrogen
    Li, Wenqian
    Jiang, Huiling
    Liang, Jing
    Zhu, Zongqiang
    Fan, Yinming
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 983
  • [28] Promoting electrocatalytic nitrogen reduction by introducing low-spin sites in ferromagnetic single-atom alloys
    Ren, Yiming
    Bai, Peiyao
    Wang, Hongguang
    Wei, Shilin
    Xu, Lang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23425 - 23435
  • [29] Electrocatalytic nitrogen reduction on defective graphene modulated from single atom catalyst to aluminium clusters
    Maibam, Ashakiran
    Krishnamurty, Sailaja
    Babarao, Ravichandar
    APPLIED SURFACE SCIENCE, 2023, 623
  • [30] An isolated bimetallic Fe-Ru single-atom catalyst for efficient electrochemical nitrogen reduction
    Liu, Mengdi
    Zhang, Sai
    Chen, Min
    Zhou, Shuxue
    Wu, Limin
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (27) : 14900 - 14910