Influence of a square-root singularity on the behaviour of piecewise smooth maps

被引:26
作者
Avrutin, Viktor [3 ]
Dutta, Partha Sharathi [1 ,2 ]
Schanz, Michael [3 ]
Banerjee, Soumitro [4 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Ctr Theoret Studies, Kharagpur 721302, W Bengal, India
[3] Univ Stuttgart, Inst Parallel & Distributed Syst IPVS, D-70569 Stuttgart, Germany
[4] Indian Inst Sci Educ & Res, Dept Phys, Nadia 741252, W Bengal, India
关键词
BORDER-COLLISION BIFURCATIONS; MULTI-PARAMETRIC BIFURCATIONS; BANDCOUNT INCREMENT SCENARIO; GRAZING BIFURCATIONS; C-BIFURCATIONS; FAMILY;
D O I
10.1088/0951-7715/23/2/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional continuous piecewise smooth nonlinear map with square-root singularity. For particular choice of the parameters, this map represents the normal form of discrete-time representation of impact oscillator near grazing bifurcation. Owing to the nonlinearity, the map exhibits smooth and nonsmooth bifurcations very closely related to each other. Our main aim is to study how the nonlinearity influences the known results of nonsmooth bifurcations and the interaction between smooth and nonsmooth bifurcations considering the whole parameter space. We also explain the organizing source of several atypical bifurcation phenomena using the concept of multi-parametric bifurcation.
引用
收藏
页码:445 / 463
页数:19
相关论文
共 39 条
[1]  
[Anonymous], 2001, NONLINEAR PHENOMENA
[2]  
AVRUTIN V, 2009, SPECIAL TYPE BORDER
[3]   The bandcount increment scenario. II. Interior structures [J].
Avrutin, Viktor ;
Eckstein, Bernd ;
Schanz, Michael .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2097) :2247-2263
[4]   Codimension-three bifurcations: Explanation of the complex one-, two-, and three-dimensional bifurcation structures in nonsmooth maps [J].
Avrutin, Viktor ;
Schanz, Michael .
PHYSICAL REVIEW E, 2007, 75 (06)
[5]   On the fully developed bandcount adding scenario [J].
Avrutin, Viktor ;
Schanz, Michael .
NONLINEARITY, 2008, 21 (05) :1077-1103
[6]   The bandcount increment scenario. I. Basic structures [J].
Avrutin, Viktor ;
Eckstein, Bernd ;
Schanz, Michael .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2095) :1867-1883
[7]   On detection of multi-band chaotic attractors [J].
Avrutin, Viktor ;
Eckstein, Bernd ;
Schanz, Michael .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2081) :1339-1358
[8]   Multi-parametric bifurcations in a piecewise-linear discontinuous map [J].
Avrutin, Viktor ;
Schanz, Michael ;
Banerjee, Soumitro .
NONLINEARITY, 2006, 19 (08) :1875-1906
[9]   On multi-parametric bifurcations in a scalar piecewise-linear map [J].
Avrutin, Viktor ;
Schanz, Michael .
NONLINEARITY, 2006, 19 (03) :531-552
[10]   The bandcount increment scenario. III. Deformed structures [J].
Avrutin, Viktor ;
Eckstein, Bernd ;
Schanz, Michael .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2101) :41-57