Noncommutativity and the weak cosmic censorship

被引:9
作者
Gupta, Kumar S. [1 ]
Juric, Tajron [2 ]
Samsarov, Andjelo [2 ]
Smolic, Ivica [3 ]
机构
[1] Saha Inst Nucl Phys, Theory Div, 1-AF Bidhannagar, Kolkata 700064, W Bengal, India
[2] Rudjer Boskovic Inst, Bijenicka C-54, HR-10002 Zagreb, Croatia
[3] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia
基金
欧盟地平线“2020”;
关键词
Black Holes; Models of Quantum Gravity; Non-Commutative Geometry; Spacetime Singularities; BTZ BLACK-HOLE; GRAVITATIONAL COLLAPSE; QUANTUM GEOMETRY; STRING THEORY; SPACETIME; POINCARE; ENTROPY; SINGULARITY; FINITENESS; TEITELBOIM;
D O I
10.1007/JHEP10(2019)170
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that a noncommutative massless scalar probe can dress a naked singularity in AdS3 spacetime, consistent with the weak cosmic censorship. The dressing occurs at high energies, which is typical at the Planck scale. Using a noncommutative duality, we show that the dressed singularity has the geometry of a rotating BTZ black hole which satisfies all the laws of black hole thermodynamics. We calculate the entropy and the quasi-normal modes of the dressed singularity and show that the corresponding spacetime can be quantum mechanically complete. The noncommutative duality also gives rise to a light scalar, which can be relevant for early universe cosmology.
引用
收藏
页数:18
相关论文
共 85 条
[1]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[2]   QUANTUM MEASUREMENT, GRAVITATION, AND LOCALITY [J].
AHLUWALIA, DV .
PHYSICS LETTERS B, 1994, 339 (04) :301-303
[3]   Noncommutative inflation [J].
Alexander, S ;
Brandenberger, R ;
Magueijo, J .
PHYSICAL REVIEW D, 2003, 67 (08)
[4]  
[Anonymous], 1981, ANN MATH STUDIES
[5]   The string landscape, black holes and gravity as the weakest force [J].
Arkani-Hamed, Nima ;
Motl, Lubos ;
Nicolis, Alberto ;
Vafa, Cumrun .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06)
[6]   Quantum geometry and the Schwarzschild singularity [J].
Ashtekar, A ;
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) :391-411
[7]  
Ashtekar A, 2003, ADV THEOR MATH PHYS, V7, P233
[8]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[9]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[10]   Geometry of the 2+1 black hole (vol 48, pg 1506, 1993) [J].
Banados, Maximo ;
Henneaux, Marc ;
Teitelboim, Claudio ;
Zanelli, Jorge .
PHYSICAL REVIEW D, 2013, 88 (06)