Soliton perturbation theory for the compound KdV equation

被引:20
作者
Biswas, Anjan [1 ]
Konar, Swapan
机构
[1] Delaware State Univ, Dept Appl Math & Theoret Phys, Dover, DE 19901 USA
[2] Birla Inst Technol, Dept Appl Phys, Ranchi 835215, Bihar, India
基金
美国国家科学基金会;
关键词
soliton perturbation theory; adiabatic parameter dynamics; KdV equation;
D O I
10.1007/s10773-006-9231-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The soliton perturbation theory is used to study the solitons that are governed by the compound Korteweg de-Vries equation in presence of perturbation terms. The adiabatic parameter dynamics of the solitons in presence of the perturbation terms are obtained.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 20 条
[1]   Multi-hump stationary waves for a Korteweg-de Vries equation with nonlocal perturbations [J].
Feng, BF ;
Kawahara, T .
PHYSICA D, 2000, 137 (3-4) :237-246
[2]   Stationary travelling-wave solutions of an unstable KdV-Burgers equation [J].
Feng, BF ;
Kawahara, T .
PHYSICA D, 2000, 137 (3-4) :228-236
[3]   Exact solution in terms of elliptic functions for the Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
WAVE MOTION, 2003, 38 (02) :109-115
[4]  
Feng ZS, 2002, DYNAM CONT DIS SER A, V9, P563
[5]   A two-dimensional Boussinesq equation for water waves and some of its solutions [J].
Johnson, RS .
JOURNAL OF FLUID MECHANICS, 1996, 323 :65-78
[6]   Solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order [J].
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (03) :709-720
[7]   Existence of solitary waves for water-wave models [J].
Kichenassamy, S .
NONLINEARITY, 1997, 10 (01) :133-151
[8]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[9]  
KODAMA Y, 1981, STUD APPL MATH, V64, P225
[10]   RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations [J].
Li, ZB ;
Liu, YP .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 148 (02) :256-266