The Sensitivity of North American Terrestrial Carbon Fluxes to Spatial and Temporal Variation in Soil Moisture: An Analysis Using Radar-Derived Estimates of Root-Zone Soil Moisture

被引:121
作者
Zhang, Ke [1 ,2 ]
Ali, Ashehad [3 ]
Antonarakis, Alexander [4 ]
Moghaddam, Mahta [5 ]
Saatchi, Sassan [6 ]
Tabatabaeenejad, Alireza [5 ]
Chen, Richard [5 ]
Jaruwatanadilok, Sermsak [6 ]
Cuenca, Richard [7 ]
Crow, Wade T. [8 ]
Moorcroft, Paul [3 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[2] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China
[3] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[4] Univ Sussex, Dept Geog, Brighton, E Sussex, England
[5] Univ Southern Calif, Ming Hsieh Dept Elect Engn Electrophys, Los Angeles, CA USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA USA
[7] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97331 USA
[8] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD USA
基金
中国国家自然科学基金;
关键词
AirMOSS; Root-Zone Soil Moisture; Carbon Fluxes; P-band Synthetic Aperture Radar; Soil Moisture Blending; CONTERMINOUS UNITED-STATES; PLANT FUNCTIONAL-TYPE; LAND-SURFACE; PEDOTRANSFER FUNCTIONS; BIOSPHERE MODEL; ECOSYSTEM RESPIRATION; HYDRAULIC-PROPERTIES; NEAREST-NEIGHBOR; TEMPERATURE; RETRIEVAL;
D O I
10.1029/2018JG004589
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study examines the impact of variation in root-zone soil moisture (RZSM), a key component of the Earth's hydrologic cycle and climate system, on regional carbon fluxes across seven North American ecosystems. P-band synthetic aperture radar-derived RZSM estimates were incorporated into the ecosystem demography (ED2) terrestrial biosphere model through a model-data blending approach. Analysis shows that the model qualitatively captures inter-daily and seasonal variability of observed RZSM at seven flux tower sites (r = 0.59 +/- 0.26 and r = 0.70 +/- 0.22 for 0-10 and 10-40 cm of soil layers, respectively; P < 0.001). Incorporating the remotely sensed RSZM estimates increases the accuracy (root-mean-square deviations decrease from 0.10 +/- 0.07 and 0.09 +/- 0.06 m(3)center dot m(-3) to 0.08 +/- 0.05 and 0.07 +/- 0.03 m(3) center dot m(-3) for 0-10 and 10-40 cm of soil layers, respectively) of the model's RZSM predictions. The regional carbon fluxes predicted by the native and RZSM-constrained model were used to quantify sensitivities of gross primary productivity, autotrophic respiration (R-a), heterotrophic respiration (R-h), and net ecosystem exchange to variation in RZSM. Gross primary productivity exhibited the largest sensitivity (6.6 +/- 10.7 kg center dot cm(-2)center dot year center dot theta(-1)) followed by R-a (2.9 +/- 7.3 kg center dot cm(-2)center dot year(-1)center dot theta(-1)), R-h (2.6 +/- 3.1 kg center dot cm(-2)center dot year(-1)center dot theta(-1)), and net ecosystem exchange (-1.7 +/- 7.8 kg center dot cm(-2)center dot year(-1)center dot theta(-1)). Analysis shows that these carbon flux sensitivities varied considerably across regions, reflecting influences of canopy structure, soil properties, and the ecophysiological properties of different plant functional types. This study highlights (1) the importance of improved terrestrial biosphere model predictions of RZSM to improve predictions of terrestrial carbon fluxes, (2) a need for improved pedotransfer functions, and (3) improved understanding of how soil characteristics, climate, and vegetation composition interact to govern the responses of different ecosystems to changing hydrological conditions.
引用
收藏
页码:3208 / 3231
页数:24
相关论文
共 98 条
[1]   The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink [J].
Albani, Marco ;
Medvigy, David ;
Hurtt, George C. ;
Moorcroft, Paul R. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (12) :2370-2390
[2]   How useful are plant functional types in global simulations of the carbon, water, and energy cycles? [J].
Alton, Paul B. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
[3]   How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland [J].
Baldocchi, DD ;
Xu, LK ;
Kiang, N .
AGRICULTURAL AND FOREST METEOROLOGY, 2004, 123 (1-2) :13-39
[4]   Impact of Soil Moisture-Atmosphere Interactions on Surface Temperature Distribution [J].
Berg, Alexis ;
Lintner, Benjamin R. ;
Findell, Kirsten L. ;
Malyshev, Sergey ;
Loikith, Paul C. ;
Gentine, Pierre .
JOURNAL OF CLIMATE, 2014, 27 (21) :7976-7993
[5]   Pedotransfer functions estimating soil hydraulic properties using different soil parameters [J].
Borgesen, Christen D. ;
Iversen, Bo V. ;
Jacobsen, Ole H. ;
Schaap, Marcel G. .
HYDROLOGICAL PROCESSES, 2008, 22 (11) :1630-1639
[6]   Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation [J].
Camps, Adriano ;
Park, Hyuk ;
Pablos, Miriam ;
Foti, Giuseppe ;
Gommenginger, Christine P. ;
Liu, Pang-Wei ;
Judge, Jasmeet .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (10) :4730-4742
[7]  
Chapin E, 2012, IEEE RAD CONF
[8]  
CLAPP RB, 1978, WATER RESOUR RES, V14, P601, DOI 10.1029/WR014i004p00601
[9]   A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals [J].
Crow, W. T. ;
Ryu, D. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (01) :1-16
[10]   A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes [J].
Dietze, Michael C. ;
Serbin, Shawn P. ;
Davidson, Carl ;
Desai, Ankur R. ;
Feng, Xiaohui ;
Kelly, Ryan ;
Kooper, Rob ;
LeBauer, David ;
Mantooth, Joshua ;
McHenry, Kenton ;
Wang, Dan .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2014, 119 (03) :286-300