StuffNet: Using 'Stuff' to Improve Object Detection

被引:19
作者
Brahmbhatt, Samarth [1 ]
Christensen, Henrik I. [2 ]
Hays, James [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Calif San Diego, La Jolla, CA USA
来源
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017) | 2017年
关键词
CONTEXT;
D O I
10.1109/WACV.2017.109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Convolutional Neural Network (CNN) based algorithm - StuffNet - for object detection. In addition to the standard convolutional features trained for region proposal and object detection [33], StuffNet uses convolutional features trained for segmentation of objects and 'stuff' (amorphous categories such as ground and water). Through experiments on Pascal VOC 2010, we show the importance of features learnt from stuff segmentation for improving object detection performance. StuffNet improves performance from 18.8% mAP to 23.9% mAP for small objects. We also devise a method to train StuffNet on datasets that do not have stuff segmentation labels. Through experiments on Pascal VOC 2007 and 2012, we demonstrate the effectiveness of this method and show that StuffNet also significantly improves object detection performance on such datasets.
引用
收藏
页码:934 / 943
页数:10
相关论文
共 37 条
[1]  
[Anonymous], 2008, A wavelet tour of signal processing: The sparse way
[2]  
[Anonymous], The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
[3]  
[Anonymous], 2016, ARXIV160403539
[4]  
[Anonymous], 2015, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, DOI DOI 10.1109/CVPR.2015.7299188
[5]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[6]  
Dai J, 2015, IEEE COMPUT SOC CONF
[7]  
Divvala SK, 2009, PROC CVPR IEEE, P1271, DOI 10.1109/CVPRW.2009.5206532
[8]   Pedestrian Detection: An Evaluation of the State of the Art [J].
Dollar, Piotr ;
Wojek, Christian ;
Schiele, Bernt ;
Perona, Pietro .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) :743-761
[9]  
Farhadi A, 2009, PROC CVPR IEEE, P1778, DOI 10.1109/CVPRW.2009.5206772
[10]   Object detection via a multi-region & semantic segmentation-aware CNN model [J].
Gidaris, Spyros ;
Komodakis, Nikos .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1134-1142