SCHATTEN-VON NEUMANN CHARACTERISTIC OF INFINITE TRIDIAGONAL BLOCK OPERATOR MATRICES

被引:0
作者
Al, Pembe Ipek [1 ]
Ismailov, Zameddin I. [1 ]
机构
[1] Karadeniz Tech Univ, Fac Sci, Dept Math, Trabzon, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2019年 / 68卷 / 02期
关键词
Direct sum of Hilbert spaces; infinite tridiagonal block operator matrices; compact operator; Schatten-von Neumann classes; SPECTRUM;
D O I
10.31801/cfsuasmas.474512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the boundedness and compactness properties of infinite tridiagonal block operator matrices in the direct sum of Hilbert spaces are studied. The necessary and sufficient conditions for these operators belong to Schatten-von Neumann class are given. Then, the results are supported by applications.
引用
收藏
页码:1852 / 1866
页数:15
相关论文
共 12 条
  • [1] Schatten-von Neumann Characteristic of Tensor Product Operators
    Ipek, Al Pembe
    Ismailov, Zameddin I.
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [2] Schatten-von Neumann Characteristic of Tensor Product Operators
    Al, Pembe Ipek
    Ismailov, Zameddin I.
    FILOMAT, 2020, 34 (10) : 3411 - 3415
  • [3] Schatten-von Neumann classes of integral operators
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 1 - 29
  • [4] On Extrapolation Properties of Schatten-von Neumann Classes
    Lykov, K. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (01) : 57 - 61
  • [5] Schatten-von Neumann properties in the Weyl calculus
    Buzano, Ernesto
    Toft, Joachim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (12) : 3080 - 3114
  • [6] A Schatten-von Neumann class criterion for the magnetic Weyl calculus
    Athmouni, Nassim
    Purice, Radu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (05) : 733 - 749
  • [7] Pseudo-differential operators and Schatten-von Neumann classes
    Buzano, E
    Nicola, F
    ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 117 - 130
  • [8] On the Schatten-von Neumann properties of some pseudo-differential operators
    Sobolev, Alexander V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5886 - 5911
  • [9] REGULARIZED TRACE FORMULA FOR DISCRETE OPERATORS WITH A PERTURBATION IN THE SCHATTEN-VON NEUMANN CLASS
    Murtazin, Kh. Kh.
    Fazullin, Z. Yu.
    UFA MATHEMATICAL JOURNAL, 2015, 7 (04): : 104 - 110
  • [10] Toeplitz Operators with Radial Symbols on Bergman Space and Schatten-von Neumann Classes
    Bendaoud, Z.
    Kupin, S.
    Toumache, K.
    Toure, B.
    Zarouf, R.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2020, 16 (01) : 3 - 26